
Impact of Data Quality for Automatic Issue
Classification Using Pre-trained Language Models

Giuseppe Colavito, Filippo Lanubile, Nicole Novielli, Luigi Quaranta

University of Bari

{giuseppe.colavito,filippo.lanubile,nicole.novielli,luigi.quaranta}@uniba.it

Abstract

Issue classification aims to recognize whether an issue reports a bug, a request
for enhancement or support. In this paper we use pre-trained models for the
automatic classification of issues and investigate how the quality of data
a↵ects the performance of classifiers. Despite the application of data quality
filters, none of our attempts had a significant e↵ect on model quality. As root
cause we identify a threat to construct validity underlying the issue labeling.

Keywords: GitHub, issue trackers, issue labeling, BERT, model quality,
label correctness

1. Introduction

Issue trackers are used to manage requests for change, such as bug fixing
or product improvement, and requests for support. An issue report usually
includes an identifier, a description, the author, the status (e.g., open, as-
signed, closed), a thread of comments, and a label such as bug, enhancement
or support. However, submitters frequently misclassify labels by confound-
ing improvement requests as bugs, and vice versa [1]. Herzig et al. report
that 33.8% of all issue reports are incorrectly categorized as shown in an
extensive investigation covering more than 7000 issues across 5 projects [2].
Automatic classification of issues could be helpful in supporting e↵ective issue
management and prioritization, thus justifying the interest of the research
community on this topic [3].

Previous studies have proposed supervised approaches to address the task
of automatically predicting the label that should be assigned to a new issue.
Early studies leveraged traditional machine learning in combination with
text-based features [1]. Neural-network-based approaches to distributional
semantics, also known as word embeddings [4, 5], have received increasing
attention and are now regarded as the state of the art for several natural

Journal of Systems and Software September 11, 2023

Preprint - Accepted for publication in the Journal of Systems and Software (Sept. 2023)

language processing (NLP) tasks, including text categorization. Kallis et
al. [6, 7] proposed Ticket Tagger, a machine learning classifier trained on
GitHub data, which leverages the textual content of an issue title and body,
whose vectorial representation is based on fastText [8]. Among recent ad-
vances, BERT (Bidirectional Encoder Representations from Transformers)
has emerged as a robust approach for task-agnostic pre-training of language
models [9]. It outperformed the state of the art in several NLP tasks, includ-
ing issue classification.

In this paper, we report how we exploited pre-trained language models
for automatic issue labeling. Hence, our first research question can be for-
mulated as follows:

RQ1: To what extent we can leverage pre-trained language models to en-

hance the state of the art in automatic issue labeling?

To address our first research question, we performed an empirical study in
the scope of the NLBSE’22 tool competition [10]. The goal of the challenge
was to build a classifier for automatic issue report classification. The orga-
nizers provided a dataset including more than 800K issue reports, extracted
from GitHub open-source software projects and labeled by their authors as
either bug, enhancement, or question [6, 7]. The participants were invited to
use the dataset to train and evaluate machine learning (ML) models for the
automatic classification of issues. To solve the task, we proposed two models
based on supervised learning that leverage the information available at the
time of issue writing, that is the title and body of the issue and the issue-
author association (e.g., collaborator, owner, etc.). We experimented with
the fine-tuning of BERT [9] and its variants ALBERT [11] and RoBERTa [12].
To combine text and author information, we also trained a multilayer percep-
tron (MLP) classifier that leverages the BERT-based embedding of the issue
with a one-hot encoding representation of the author-issue relation. Both
ML models outperformed the baseline.

As a follow-up of the challenge – after analyzing misclassified cases – we
focused on investigating the relationship between data and model quality
as part of our study’s second goal. The error analysis suggests that one of
the main causes of issue misclassification is the presence of inconsistencies
in the labeling rationale or the presence of issues tagged with more than
one label, which might introduce noise in the model training. In fact, the
issues in the dataset were collected using only a time-based criterion for in-
clusion. Conversely, previous work on GitHub mining suggests that a series
of proxies could be used as indicators for data quality, such as the project star
count [13, 14]. Hence, we formulate the second research question as follows:

2

RQ2: To what extent the performance of a model can be improved by im-

proving the quality of the training data?

Prior research already explored the influence of data quality on model
quality by means of manual label verification [15]. Nevertheless, manual an-
notation is a laborious and time-consuming task. This study investigates the
e�cacy of operationalizing data quality criteria in the form of filters that can
be automatically applied on training data. To address our second research
question, we define a number of data quality criteria based on previous re-
search in this field. We operationalize them into a set of filters that we then
apply on the former GitHub dataset to progressively filter out uncertain data.
In addition, we include a new dataset of Jira issues [16] that already meets
these data quality criteria.

The main contributions of this work are as follows:

• We propose and assess supervised classifiers for GitHub issue labeling
that leverage pre-trained language models. The best model achieves
a performance of F1 = .8591 using textual information only extracted
from the issue body and title.

• We investigate the impact of data quality on our automatic issue clas-
sifiers. We found that neither the most popular nor the most mature
projects generate better predictions of issue labeling. We speculate
that the negative result in improving the issue classification is caused
by conceptual inconsistencies in the labeling, which make any subse-
quent data cleanup action useless.

• We build and distribute a lab package to verify, replicate, and build
upon the present study. The replication material is available on GitHub
[17].

The remainder of this paper is structured as follows. In Section 2, we
report the background on word embeddings and pre-trained language models
(i.e., BERT and its variants) and we discuss the importance of ensuring data
quality when building ML models. In Section 3, we present the datasets
used in our experiments; then, in Section 4, we describe the methodology of
our study. In Section 5, we address our first research question by reporting
the results of the model performance evaluation conducted on the test set
and comparing it with the baseline approach. As a further contribution
of this study, we report the results of an error analysis carried out on the

3

misclassified cases. In Section 6, we address our second research question by
reporting the impact of data quality filters on the classification performance
based on the GitHub and Jira datasets (see Section 6.1 and 6.2, respectively).
We discuss our findings in Section 7, where we also summarize recent related
work on issue classification. The paper is concluded in Section 8.

2. Background and Related Work

2.1. Text embedding

E↵ectively modeling semantics of natural language has been a subject of
study for computational linguistics since long. In line with themeaning-is-use

assumption, – i.e., the semantics of words can be inferred by its contextual
use – and thanks to the recent availability and accessibility of higher compu-
tational power resources, recent studies led to the development and release of
robust pre-trained, task-agnostic language models that successfully achieve
state-of-the-art performance in many natural language processing (NLP) ap-
plications. In particular, word embeddings [4, 5], have been used to address
several NLP tasks, including text categorization, achieving state-of-the-art
performance.

Among others, BERT (Bidirectional Encoder Representations from Trans-
formers) represents the most recent advancement of research in the NLP field.
BERT was proposed by Devlin et al. [9] for the pre-training of language
models using deep bidirectional transformers. Since its introduction, BERT
outperformed state-of-the-art approaches in several NLP tasks, thus repre-
senting a disruptive innovation in computational linguistic research. Di↵er-
ently from previous language models, which provide context-free embedding
of words (see, for example Word2Vec [5]), BERT generates representations
of words based on their context. BERT is task-agnostic and can be easily
embedded in a text classifier thanks to transfer learning and fine-tuning of
the parameters of the pre-trained model originally released by Google. One
of the main advantages of using a BERT-based classifier is the possibility of
leveraging transfer learning to adapt a pre-trained language model originally
obtained by exploiting a huge corpus of unlabeled documents. Compared
to model pre-training, the fine-tuning step is less expensive albeit able to
outperform task-specific architectures for several NLP tasks [9], while still
enabling the training of robust task-specific classifiers.

Since its release, alternative versions of BERT-based language models
have been proposed to address some of the limitations of the original model [12,
11, 18]. Sanh et al. [18] released DistilBERT, a model trained with half of the
BERT parameters to reduce the time needed to train the language model.
Liu et al. [12] replicated the original study by Devlin et al. and retrained the

4

BERT model by introducing modifications to improve the accuracy. Specif-
ically, they trained the Robustly-optimized BERT (RoBERTa) for a longer
time, with more epochs and a bigger batch size, thus obtaining a more robust
pre-trained language model. Di↵erently, to build ALBERT [11], Lan et al.
leveraged factorized embeddings to reduce overfitting during the fine-tuning
of NLP models.

2.2. Automatic Classification of Issues

Issue tracking systems allow users to report the problems of a software
product by entering a brief textual summary, typically composed of a title
and an optional description. They can be standalone tools, such as Jira,1 or
tools integrated in code hosting platforms like GitHub.2

While this kind of software solution lowers the entry barrier and brings
more novice external contributors, it complicates the work of maintainers, as
several issues of various types and quality are typically submitted [19, 20, 21].
Maintainers can utilize customized labeling to mark and organize issue re-
ports. Labels can provide quick hints about issues, such as what kind of topic
an issue is about, what development task the issue is related to, or what pri-
ority the issue has. Labels are then helpful for project management because
they can act as both a classification and filtering mechanism [22, 23]. How-
ever, the labeling mechanism on GitHub is rarely used by contributors [7, 19]
and maintainers have to spend a lot of e↵ort for manually labeling issues [21].

Previous studies presented several approaches to automatically categorize
issues posted in tracking systems. Antoniol et al. [1] show that machine
learning models may be used to distinguish between bugs and other types of
issues. Six alternative issue categories are introduced by Herzig et al. [2]: bug,
feature request, improvement request, documentation request, and others.
Zhou et al. [24] merge structured and unstructured free-text data to train
a classifier that can accurately determine if a bug report is indeed a bug or
another type of issue.

More recently, researchers started using deep learning and, in particular,
pre-trained language models, such as BERT and its variants [25, 26].

Lately, Kallis et al. [6, 7] proposed Ticket Tagger, a machine learning
classifier that predicts the label to assign to issues trained on GitHub data.
Specifically, Ticket Tagger leverages only the textual content of an issue title
and body, whose vectorial representation is based on fastText [8], an open-
source tool released by Facebook AI research. Ticket Tagger was identified by

1
https://www.atlassian.com/en/software/jira

2
https://GitHub.com

5

the NLBSE tool competition organizers as the baseline system, and all par-
ticipants were invited to compare the performance of the proposed systems
with it.

2.3. Data Quality

Data cleaning, i.e., the process of removing data quality problems, is an
activity of uttermost importance in any ML workflow because performance
can su↵er considerably if models are trained on bad-quality data [27, 28].
However, data cleaning is among the most time-consuming chores in the data
science practice [29]; according to a survey administered to 80 practitioners
in the field, such task accounts for about 60% of the work accomplished by
data scientists every day [30].

To help practitioners timely detect data quality issues and fix them, re-
searchers have started designing systems for the automatic detection and
restoration of potential problems in data. For instance, Hynes et al. built the
‘Data Linter’, i.e., an open-source tool aimed at finding various data-related
issues in ML pipelines [31]. Similarly, Rekatsinas et al. developed HoloClean,
a semi-automated data repairing framework [32]; while Data Linter detects
problems based on data-patterns and heuristics, HoloClean is powered by a
weakly supervised ML approach based on statistical learning and inference.
Both tools are optimized to work with structured datasets, although data
cleaning is strongly advised also in the case of unstructured text data [33].

As regards the data quality of GitHub projects, notwithstanding the
plethora of opportunities that GitHub provides for archival studies, some
researchers reported a number of potential threats that their colleagues need
to take into account when mining data from this platform [34, 35, 36]. In
particular, besides enumerating the exciting promises of mining GitHub,
Kalliamvakou et al. provided evidence of 9 issues (perils) that might hinder
the quality of data scraped from the website or gathered from its API [34]:
for instance, most of the publicly available projects are personal, they contain
only a few commits, and are typically inactive; moreover, many repositories
are not used for software development, since several users leverage GitHub
as a free storage service or web hosting platform.

3. Datasets

We use two publicly available datasets of issues collected from GitHub
and Jira projects.

6

3.1. GitHub dataset

The GitHub dataset is the gold standard dataset distributed by the
NLBSE tool competition organizers [10, 6, 7]. The issues in the dataset were
extracted from the GitHub Archive [37] using Google BigQuery [38]. The
dataset consists of more than 800K GitHub issue reports extracted from open
source software projects. Each issue receives a label, which represents the
classification target. Possible class values are (i) bug, indicating that the issue
contains a bug report, (ii) enhancement, indicating that the issue contains
suggestion for improvements or requests for new features, and (iii) question,
assigned to issues containing users’ questions about the software usage. In
Table 1, we present a sample of the GitHub dataset. The dataset is split into
train (90%) and test set (10%), with the same label distribution (see Table 2).
The label distribution is unbalanced, with the minority class of questions
(9%) being underrepresented compared to bugs (50%) and enhancements
(41%).

The organizers of the tool competition selected all the issues closed dur-
ing the first semester of 2021 (from January 1st 2021 to May 31st 2021) that
contained any of the labels bug, enhancement, and question at the issue clos-
ing time [10]. The dataset was distributed as a CSV file containing raw data,
i.e., no preprocessing was applied to the text of the issues, which was shared
in the original Markdown 3 format. For each issue, the dataset includes the
issue URL, the creation date, the repository URL, the title and the body.
Furthermore, the dataset includes an attribute describing the issue-author
association, that is the role played by the author in the repository, with
values in {owner, contributor, member, collaborator, none, mannequin}.

Labels in the dataset are assigned based on what observed in GitHub.
In particular, labels in GitHub can be assigned by the user who opened the
issue or by repository maintainers. In case of multiple labels, the organizers
of the challenge used the most recent one as the gold label.

3.2. Jira dataset

The Jira dataset [16] is built from 16 public Jira repositories containing
1,822 projects and 2.7 million issues. Each Jira repository contains issues for
multiple projects, e.g. 657 projects for the Apache ecosystem. Issue labels in
Jira are heterogeneous and vary across projects. The authors of the dataset
performed a thematic analysis to derive a unified set of themes and codes,
which is used to label the issues included in the dataset. Each original label

3
https://daringfireball.net/projects/markdown/

7

Table 1: A sample of the GitHub dataset.

issue url issue label issue created at issue author association repository url issue title issue body

api.GitHub.com/. . . bug 2021-01-02T18:07:30Z NONE api.GitHub.com/. . . Welcome screen on every
editor window is very te-
dious

I just discovered Gitlens and
find the functionality useful,
thank you to all who con-
tribute...

api.GitHub.com/. . . bug 2020-12-31T18:19:31Z OWNER api.GitHub.com/. . . ”pcopy invite” and ”pcopy
paste abc:” does not check
if clipboard exists

api.GitHub.com/. . . bug 2021-01-03T04:33:36Z OWNER api.GitHub.com/. . . UI: Modal overlay is half
transparent, shouldn’t be

api.GitHub.com/. . . enhancement 2020-12-25T00:46:00Z OWNER api.GitHub.com/. . . Make the loading screen
scale with browser window
size

Currently the loading wheel
is a fixed size in pixels, but
it would be better to specify
it in terms of percentage of
the browser size.

api.GitHub.com/. . . bug 2021-01-02T21:36:57Z OWNER api.GitHub.com/. . . Spectator - Investigate a
way to strip weapons before
they are spectating a player

To bring magneto stick
floating

Table 2: Label distribution in the GitHub dataset.

Overall Train set Test set
bug 401,391 (50%) 361,103 (50%) 40,288 (50%)

enhancement 332,577 (41%) 299,374 (41%) 33,203 (41%)
question 69,449 (9%) 62,422 (9%) 7,027 (9%)

total 803,417 722,899 80,518

in Jira is mapped to a code (e.g., bug report) associated to a theme (e.g.,
maintenance).

From the set of codes defined by Montgomery et al. [16], we identify the
ones whose semantics match the labels used in the GitHub dataset, namely
bug, enhancement, and question. By doing so, we aim at enabling a fair
comparison of the performance achieved by the classifier on the two datasets.
We report the selected codes and their mapping to the classification labels
in Table 3. In this study, we include only the issues that can be mapped
as either bug, enhancement, or question. The resulting dataset, with label
distribution and breakdown by project is reported in Table 4

Table 3: The mapping applied from Jira codes to GitHub issue labels.

Label Codes

Bug {’Bug Report’}
Enhancement {’New Feature’, ’Improvement Suggestion’, ’Feature Re-

quest’}
Question {’Support Request’, ’Question’}

The 90% of the Jira dataset is used as training set for our experiments.
The remaining 10% is kept out as test set. The split is stratified, in order to
preserve the label distribution.

8

Table 4: Label distribution in the subset of the Jira dataset used in our study.

Bug Enhancement Question
1.522.538 70% 628.308 29% 8.787 <1%

Breakdown by project

Jira Name Year Bug Enhancement Question
Apache 2000 523.110 62% 312.671 37% 2.214 <1%

Hyperledger 2016 7.622 75% 2.601 25% 0 <1%
IntelDAOS 2016 3.616 100% 0 0% 0 <1%

JFrog 2006 8.236 62% 4.993 38% 34 <1%
Jira 2002 131.138 48% 138.453 51% 2.438 1%

JiraEcosystem 2004 20.414 67% 9.958 33% 170 <1%
MariaDB 2009 22.800 95% 1.151 5% 0 <1%
Mindville 2015 860 40% 1.274 60% 0 <1%
Mojang 2012 420.819 100% 0 0% 0 <1%

MongoDB 2009 48.122 54% 38.768 44% 1.808 2%
Qt 2005 106.804 87% 15.943 13% 0 <1%

RedHat 2001 160.937 71% 66.596 29% 408 <1%
Sakai 2004 33.216 85% 5.985 15% 0 <1%

SecondLife 2007 1.231 96% 48 4% 0 <1%
Sonatype 2008 6.495 61% 2.480 23% 1.597 15%

Spring 2003 27.118 50% 27.387 50% 118 <1%

4. Methodology

In the following, we describe the design of the empirical study we per-
formed to address our research questions.

To answer RQ1 (“To what extent we can leverage pre-trained language

models to enhance the state of the art in automatic issue labeling?”) we im-
plement a supervised approach by leveraging state-of-the-art pre-trained lan-
guage models based on transformers. Specifically, we fine-tune BERT and its
variants to address the issue classification task of the challenge and we assess
the performance of the classifier on the GitHub dataset (see Section 4.4).

To address RQ2 (“To what extent the performance of a model can be

improved by improving the quality of the training data?”) we replicate the
fine-tuning and evaluation of BERT-based classifiers after the application of
filters to improve the quality of the GitHub training data. In addition, we
take into consideration the Jira dataset, which by construction meets the
quality criteria that inspired the design of our filters. We evaluate the per-
formance of the BERT-based classifiers both on the filtered GitHub datasets
and on the Jira dataset (see Section 4.5).

As a preliminary step, we preprocess both datasets as described in Sec-

9

tion 4.1. The training of the issue classifiers, reported in Section 4.3, is
performed by first fine-tuning the pretrained language models, as described
in Section 4.2.

4.1. Pre-processing

As a first pre-processing step, we identify text patterns indicating non-
textual items – such as images, links, or code snippets – and replace them
with tokens (e.g., for images). Then, we perform a further text nor-
malization step using ekphrasis Text Pre-Processor 4, which is able to identify
URLs, email addresses, percentage or currency symbols, phone numbers, user
mentions, times, dates, and numbers. We replace such items with ad hoc to-
kens; also, we use ekphrasis to unpack hashtags, contractions, and emojis.

Since the documents need to be fed into either BERT or one of its vari-
ants, we encode all the documents in the dataset using the model-specific
tokenizer. To avoid exceeding the GPU memory capacity, we pad/truncate
each document to 128 tokens, in line with previous work [25]. We apply the
same preprocessing steps to both datasets.

4.2. Model fine-tuning

We implement a supervised approach by leveraging state-of-the-art mod-
els based on transformers. Specifically – as depicted in Figure 1 – for the
GitHub dataset, we experiment with the fine-tuning of BERT-based models
in two di↵erent settings. In the first setting (denoted as Classifier 1 in
Figure 1), we leverage the textual content of the issue (i.e., title and body)
to fine-tune the language model and obtain the final classifier. In the second
setting (denoted as Classifier 2 in Figure 1), we combine textual data
with the information provided by the author-association field and train a
feed-forward network using PyTorch 5.

For the Jira dataset, we only implement the first approach, as we observe
that it outperforms the second classifier trained on the GitHub dataset [39]
(see Table 7).

As a preliminary step, we identify the best pre-trained language model to
be used for the issue classification task. To this aim, we conduct some exper-
iments on the GitHub dataset. In particular, we compare the performance of
BERT [9], ALBERT [11], and RoBERTa [12]; as for BERT, we use both the
base model and the large model. To select the best model, we fine-tune and
evaluate each of them by leveraging the training set. Specifically, we split the

4
https://GitHub.com/cbaziotis/ekphrasis

5
https://pytorch.org/

10

Figure 1: The two classifiers implemented for issue labeling.

training set to use 90% for training and 10% for validation. We use the train-
ing set to assess the performance of the model using di↵erent learning rates
and number of epochs. In line with the recommendation provided by Devlin
et al. [9], we experimented with learning rates in [5e-5, 4e-5, 3e-5, 2e-5] and
number of epochs in [1,2,3,4]. We selected the final hyper-parameters to be
used in this study based on the best micro-F1 observed on the validation set
during the hyper-parameter tuning step. As a result of the hyper-parameter
tuning, we decided to fine-tune each model using up to 4 epochs and learning
rate = 2e-5. For fine-tuning all the models, we use the AdamW optimizer
(Adam weight decay) with epsilon = 1e-8, which is the default value.

11

Table 5: Issue-author association per class.

Issue-author association/Class bug enhancement question
Collaborator 12% 13% 4%
Contributor 17% 16% 7%
Mannequin 0 0 0
Member 12% 14% 3%
None 43% 21% 81%
Owner 16% 34% 5%

4.3. Training the Issue Classifiers

As a first step, we fine-tune the best language model using the full training
set. To this aim, we replicate the same procedure adopted for model selec-
tion, i.e., we fine-tune the best language model using the issue title and body,
which we pad/truncate to consistently represent documents with the same
length (128 tokens). Then, we use the fine-tuned RoBERTa model to build
the two classifiers. For Classifier 1, we simply rely on the textual infor-
mation of the GitHub issues, i.e., on the concatenation of the title and body
of each issue. For Classifier 2, we build a multilayer perceptron (MLP)
classifier that leverages the combination of the textual information of the
issues with the information regarding the issue-author association contained
in the dataset. This decision was inspired by the issue-author association
per class in the GitHub dataset. The distribution (see Table 5) suggests
that the information regarding the issue-author association can provide use-
ful insights for issue classification. For instance, questions and bugs appear
to be primarily reported by non-collaborating users, while enhancements are
mainly reported by repository owners. Thus, we decided to investigate to
what extent the textual information alone is su�cient to perform accurate
issue classification compared to the setting in which the issue-author associ-
ation is also leveraged.

To this aim, we extract the text embeddings of each document, i.e.,
the concatenation of the title and body of the issues, using the last hid-
den layer before the classification layer of the fine-tuned model, obtaining a
768-dimension embedding. We then concatenate the text embedding with
the one-hot-encoding representation of the issue-author association informa-
tion (six dimensions overall, one for each possible value of the issue-author
association attribute). The new vector is fed into a multi-layer perceptron
with two hidden layers of size 256 and 128, respectively. In order to train the
network, we use stratifed sampling to split the training set into a training
(90%) and a validation set (10%). The network is then trained with the

12

following parameters: batch size = 32, learning rate = 1 ⇥ 10�5, and the
Adam optimizer. We set epochs = 100 and use an early stopping criterion
with patience = 5. We use a callback function to save the model periodically,
stop the training early if the validation loss stops improving, and select the
model achieving the best (lower) validation loss. A callback function is a
custom code that can be executed at specific stages of the training process,
such as at the end of each epoch or batch. For the training, we use PyTorch
Negative Log-Likelihood Loss

6 and set the weights of the loss function as in-
versely proportional to the class frequencies in the training data. For further
details about this implementation, our Tool Competition code is available on
GitHub [17].

4.4. Evaluating the performance of pre-trained language models (RQ1)

We provide the evaluation of the two classifiers on the test set in terms
of precision, recall, and F1. Given the unbalanced distribution of the labels
in the GitHub dataset, we report both the micro-F1 and macro-F1.

Precision and recall are two fundamental measures used for binary clas-
sification problems. Let us consider a binary classification problem with two
classes, c1 and c2. Precision is the probability that, if a random document
d is classified as c1, the decision is correct. Recall is the probability that, if
a random document d belongs to the class c1, the classifier takes the exact
decision. The mathematical expressions to calculate precision and recall are
as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

where TP is the number of true positives (correctly classified positive in-
stances), FP is the number of false positives (negative instances incorrectly
classified as positive), and FN is the number of false negatives (positive in-
stances incorrectly classified as negative).

In addition to precision and recall, the F1 score is another popular mea-
sure for binary classification. It is the harmonic mean of precision and recall
and provides a balanced measure of their trade-o↵. The F1 score ranges
from 0 to 1, with 1 indicating perfect precision and recall. The mathematical
expression for the F1 score is as follows:

6
https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html

13

F1 = 2⇥ Precision⇥Recall

Precision+Recall

F1 score can also be calculated using two di↵erent methods: f1 micro and
f1 macro. F1 micro takes into account the total number of true positives,
false positives, and false negatives across all classes, while f1 macro computes
the F1 score for each class independently and then takes their unweighted
average. The mathematical expressions for f1 micro and f1 macro are as
follows:

F1micro =
2⇥

PC
i=1 TPi

2⇥
PC

i=1 TPi +
PC

i=1 FPi +
PC

i=1 FNi

F1macro =
1

C

CX

i=1

F1i

where C is the total number of classes and F1i is the F1 score for class
i [40].

Indeed, micro-averaging is known to be influenced by the performance on
the majority class; conversely, the ability of a classifier to correctly identify
items belonging to classes with few training instances is correctly assessed
by the macro-average. For the Jira dataset, we only train one classifier,
corresponding to the Classifier 1 architecture.

4.5. Evaluating the impact of improved data quality on training (RQ2)

In line with the goal of our second research question, we assess the per-
formance of classifiers obtained using training datasets of improved quality.
To this aim, we define a number of criteria to filter out noisy data from the
GitHub dataset. In addition, we take into account the Jira dataset, which
meets by construction the same set of data quality criteria operationalized
by our filters.

When mining software repositories, it is important to appropriately de-
fine quality criteria for the inclusion/exclusion of each repository to be ana-
lyzed [41]. However, the issues included in the GitHub dataset were collected
by considering a time frame as the only inclusion criterion [10]. As a conse-
quence, the dataset might be noisy and potentially include issues from toy
projects. The quality criteria that we adopt in this study are based both on
a manual inspection of the GitHub dataset as well as on previous research
on this topic [41, 13, 14].

14

As reported by Kalliamvakou et al. [41], the majority of the projects
hosted on GitHub are either personal or inactive. Consistently with this
finding, an inspection of the GitHub dataset revealed that the corpus contains
several repositories including only one issue, a hint that the related projects
might indeed be inactive or personal. In the light of this, we try to improve
the quality of our training data by considering only high-quality projects that
are likely to actively use the GitHub issue tracking system.

The project star count is usually regarded as a reliable indicator of the
quality of a GitHub repository [13, 14]. As such, we use the number of project
stars as a proxy for data quality and experiment with training sets including
issues from repositories with an increasing number of stars. Specifically, we
filter training and test sets from the GitHub dataset using a progressive star
threshold, i.e., {50, 100, 500, 1000, 1500} stars. Given the class imbalance,
we also perform undersampling on the training set based on the support of
the minority class (i.e., question). For each of the five settings in which we
train the model using the filtered datasets, we also train a classifier on a
random sampling of the training set. This is useful to assess the e↵ectiveness
of the filter in a setting in which the two models have been trained using a
control dataset (no filter applied) with comparable size. The only di↵erence
is that, in the first case, the issues are the ones that match the quality criteria
operationalized with the stars-based filter, while in the second case they are
randomly sampled. We then test both classifiers on the filtered test set.

As a further consideration emerging from the manual inspection of the
misclassified cases from the GitHub dataset [39], we argue that the lack of
consolidated issue labeling guidelines might be a cause for the lower quality
of training data. Having consolidated contribution guidelines might help
contributors label issues consistently over time. Such guidelines are more
likely to be present in consolidated software projects: for this reason, we
adopt project age as a second proxy for quality. To operationalize this quality
criterion, we (i) remove projects with an age less than one year and (ii) we
split the remaining projects into two ranges – i.e., [1, 4] years and]4,+1)
years – as inspired by a previous work [42]. As in the case of the stars-based
filtering, we compare the performance of the classifier trained on filtered data
with the one trained on a control dataset where the age filter is not applied.

Finally, another problem observed in the GitHub dataset is the presence
of issues originally tagged with more than one label. Despite a↵ecting a small
portion of data (less than 3%), previous work suggests that this phenomenon
might represent a source of noise and thus impair classifier performance [15].
For this reason, we adopt a third filter specifically aimed at removing multi-
labeled issues.

We apply all of the above-mentioned filters to the GitHub dataset only.

15

As for the Jira dataset, it already meets the adopted quality criteria by
design. Indeed, it is exclusively composed of popular OSS projects, each
of which has been active for more than 4 years at the time of this writing.
Concerning the reliability of the labels contained in this dataset, we consider
it is ensured thanks the coding study performed by the dataset authors [16].

5. Leveraging Pre-trained Language Models for Automatic Issue

Classification

In this section, we address our first research question: To what extent we

can leverage pre-trained language models to enhance the state of the art in

automatic issue labeling?

5.1. Model training

In the following, we report the results concerning the classifiers trained
on the GitHub dataset. As described in Section 4.2, before training our
classifiers, we selected the pre-trained language model to be used. Table 6
reports the results of the performance assessment on the validation set for all
the models that we experimented with during the pre-trained model selection
phase. Given the small di↵erences observed for all models in the overall
micro average F1, we decided to pick as the best model the one achieving
the best F1 on the minority class – i.e., the question class. Accordingly,
we selected RoBERTa as the most promising language model to be used for
further experiments.

Table 6: Pre-trained model selection: the best performance achieved on the validation set

for all fine-tuned models.

ALBERT (3 epochs) BERT-base (2 epochs) BERT-large (2 epochs) RoBERTa (4 epochs)

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
bug .8695 .8906 .8799 .8712 .9069 .8887 .8694 .9106 .8895 .8756 .8985 .8869
enhancement .8615 .874 .8677 .8709 .8802 .8756 .8722 .8763 .8742 .8743 .8755 .8749
question .6734 .532 .5944 .7142 .5083 .5939 .7257 .5104 .5993 .6667 .5612 .6094
micro avg .8528 .8528 .8528 .8614 .8614 .8614 .8618 .8618 .8618 .8599 .8599 .8599
macro avg .8015 .7655 .7807 .8188 .7651 .7860 .8224 .7658 .7877 .8055 .7784 .7904

In Table 7, we report the performance of the two classifiers trained on
the GitHub dataset, comparing them with the approach based on fastText

[43], the state-of-the-art model at the time this study was performed 7. This

7
For the sake of completeness, we replicated the training of the text-based classifier

using codeBERT [44], obtaining a performance comparable to the one achieved by the

RoBERTa-based classifier. The results obtained with codeBERT are included in the repli-

cation package.

16

choice is in line with the recommendations of the organizers of the challenge
to which our classifier trained on GitHub issues was originally submitted for
evaluation [39]. Both our classifiers outperform the FastText baseline and
they achieve a performance comparable to the one reported by previous work
on issue classification based on contextual embeddings [26]. In particular,
Classifier 1 (RoBERTa fine-tuned) achieves the best micro F1 (.8591),
while for Classifier 2 (MLP) – which also includes consideration of the
author-issue association – we observe a lower micro F1 (.8295). Nonetheless,
in the latter case, the recall for the minority class question is substantially
improved – up to .7537 – as also reflected by the higher macro average recall
(.7774 and .8092 for Classifier 1 and 2, respectively). Albeit the overall
performance is substantially unvaried in terms of micro F1, the choice be-
tween the RoBERTa-based and the MLP-based model might not be trivial
in practice, as RoBERTa optimizes the precision of the minority class while
the MLP achieves a better recall.

Table 7: Performance of the classifiers trained on the GitHub dataset, evaluated on the

test set.

Classifier 1: RoBERTa Classifier 2: MLP FastText Baseline
Title + Body Author + Title + Body Title + Body

Class Prec Rec F1 Prec Rec F1 Prec Rec F1
bug .8750 .8988 .8867 .8934 .8346 .8630 .8314 .8725 .8515
enhanc. .8713 .8743 .8728 .8797 .8394 .8591 .8155 .8464 .8307
question .6760 .5591 .6120 .4727 .7537 .5810 .6521 .3502 .4557
micro avg .8591 .8591 .8591 .8295 .8295 .8295 .8162 .8162 .8162
macro avg .8074 .7774 .7905 .7486 .8092 .7677 .7663 .6897 .7126

In Table 8, we report the confusion matrix for the RoBERTa classifier.
We observe that the misclassification of questions as bugs is main cause of er-
ror (27% of test documents), immediately followed by the misclassification of
questions as enhancements (17% of cases). As the third most frequent cause
of error, we observe the misclassification of enhancements as bugs (10%). We
conjecture that this can be also explained by the unbalanced distribution of
labels in the dataset (see Table 2). For this reason, in subsequent experi-
ments we performed an undersampling of the training set . Afterward, to
get deeper insights on the di�culties inherent in our issue classification task,
we performed an error analysis by manually inspecting the classification out-
put of the RoBERTa fine-tuned model; the results are reported in the next
section.

17

Table 8: Confusion matrix on the test set for Classifier 1.

Classifier prediction

Gold label bug enhancement question
bug 36,210 (90%) 3,106 (8%) 972 (2%)
enhancement 3,261 (10%) 29,031 (87%) 911 (3%)
question 1,914 (27%) 1,184 (17%) 3,929 (56%)

5.2. Error Analysis

We manually examined a set of 370+ misclassified issues, i.e., a statisti-
cally significant sample (with 95% confidence level) of the cases in which the
classifier yielded a wrong prediction.

We observed that some issues labeled as question actually report incon-
sistent behavior or missing code, thus resembling the structure and content
of bug reports (e.g., “Fragrance not showing in Homekit - I cannot see the

installed fragrance in HomeKit, however it is available in Homebridge.”).
Often, questions contain an error message, which is also common for bugs.
These cases are labeled as question in line with the information seeking goal
of the author. However, a text-based classifier might not be able to disam-
biguate between bugs and questions in similar cases. A similar situation is
observed for questions or bugs that also include suggestions for fixing the
reported problem, which is possibly a cause for the misclassification of ques-
tions as enhancement. Finally, the dataset contains issues collected from
di↵erent projects, thus reflecting possible inconsistencies in the labeling ra-
tionale, as well as a few examples of issues written in a language other than
English.

In the following, we report and comment on some representative examples
of issues that, for the aforementioned reasons, may be di�cult to classify
correctly and were indeed misclassified by our RoBERTa-based classifier.

Figure 2 and Figure 3 depict an issue labeled as question. The author
of the issue did not originally assign any label to it. The issue content and
structure are typical of bug reports, as the issue describes a problem and
provides some instructions on how to reproduce the error. However, after
one day from the issue submission, a maintainer starts handling the problem
and adds a comment clarifying that “This is the expected behavior of the

code” (see Figure 3) - meaning that the code, used in that way, is actually
supposed to throw an error. As a result of this analysis, the maintainer labels
the issue as a question.

If the reported error was not the expected behavior of the code but rather
the result of a bug, then the issue text would have been the same. However,

18

Figure 2: An issue labeled as question from a maintainer of the repository.

Figure 3: The maintainer’s answer to the issue depicted in Figure 2.

19

Figure 4: An issue originally labeled as question by its author, which is eventually labeled

as enhancement by a maintainer.

the maintainer would have labeled it as a bug. This example demonstrates
how the di↵erence between questions and bugs might be subtle and not nec-
essarily reflected in the textual content and in its organization.

The example in Figure 4 reports an issue with two labels. The issue
author, who is a project contributor, labels the issue as a question. Indeed,
the text represents a question on repository usage. The author wants to know
how to achieve a specific goal using the software contained in the repository.
A project maintainer handles the issue, commenting: “This isn’t possible

at the moment” and showing interest in integrating the feature in a future
update. Eventually, the maintainer labels the issue as an enhancement, which
is the final label included in the dataset. This example shows how team
members may use labels di↵erently: the issue is objectively a question, but
the maintainer decided to use that question as a reminder or a starting
point to enhance the repository by integrating the feature described therein.
Accordingly, the maintainer labeled the issue as an enhancement. However,
as in the previous example, the distinction between the author’s intention to
ask a question and the maintainer’s intention to suggest an enhancement is
not clearly reflected in the text, thus causing misclassification.

20

6. Impact of Data Quality for Automatic Issue Classification

In this section, we address our second research question: To what extent

the performance of a model can be improved by improving the quality of the

training data?

6.1. Applying the quality filters on the GitHub dataset

In the following, we report on the results of the experiments conducted
after applying the filtering criteria described in Section 4.5 on the GitHub
dataset. Specifically, we report the performance of classifiers trained on the
filtered training datasets, evaluated against the held-out test set. We address
the problem of imbalanced training data by performing undersampling on the
training set, based on the cardinality of the minority class.

Applying the star filter to the GitHub dataset. To filter out low-
quality issues, we started by experimenting with a filter based on the number
of project stars. In Table 9, we show the distribution of the datasets obtained
by applying this filtering criterion with an increasing number of stars as a
threshold. It should be noted that, if a project was removed as an e↵ect of the
stars-based filtering, all of the issues belonging to that project were removed
accordingly from both the training and the test set. Moreover, since we are
removing issues from the test set, we cannot compare the performance com-
puted for the resulting models with the ones obtained using the full dataset.
In order to assess the e↵ectiveness of the filter, we train the RoBERTa-based
classifier on a random sampling of the dataset, which preserves the distribu-
tion of the corresponding filtered dataset. We then test the performance of
the classifier on the filtered test set. In Table 10 and Table 11, we report the
performance of the models trained on the filtered dataset and the randomly-
sampled dataset, respectively. We also report the confusion matrices for the
top performing models, corresponding to the 1500-star filter (see Table 12
and Table 13).

Table 9: Distribution of the dataset after filtering on the project star count.

STAR FILTER 50 Star 100 Star 500 Star 1000 Star 1500 Star
TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST

Bug 202085 (58%) 23124 (58%) 178913 (59%) 20507 (58%) 120721 (60%) 13715 (60%) 97797 (60%) 11079 (60%) 84819 (61%) 9551 (61%)
Enhancemetnt 101453 (29%) 11537 (29%) 83657 (27%) 9588 (27%) 49108 (24%) 5568 (24%) 36431 (23%) 4128 (22%) 30398 (22%) 3449 (22%)

Question 46279 (13%) 5499 (13%) 43320 (14%) 5131 (15%) 32439 (16%) 3799 (16%) 27440 (17%) 3177 (17%) 23519 (17%) 2676 (17%)
TOTAL 349817 40160 305890 35226 202268 23082 161668 18384 138736 15676

Comparing the results, we observe an improvement of the F1-macro for
the classifiers trained on the filtered dataset. Specifically, as can also be seen
from the confusion matrices, the performance improvement is mostly due to
the increased precision of the question class, which is the most di�cult to
predict (see Section 4.4). The di↵erence in the outcome of the two classifiers

21

Table 10: Performance of the models trained on the dataset filtered by the number of

project stars and then undersampled with a non-minority strategy.

STAR FILTER 50 Star 100 Star 500 Star 1000 Star 1500 Star
Prec Rec F1 Supp Prec Rec F1 Supp Prec Rec F1 Supp Prec Rec F1 Supp Prec Rec F1 Supp

bug .9160 .8009 .8546 23124 .9135 .8188 .8636 20507 .9176 .8074 .8590 13715 .9200 .8125 .8629 11079 .9234 .8124 .8643 9551
enhancement .8145 .8139 .8142 11537 .8033 .8185 .8108 9588 .7648 .8059 .7848 5568 .7578 .8011 .7789 4128 .7544 .7979 .7755 3449

question .5061 .7743 .6121 5499 .5517 .7605 .6395 5131 .5687 .7705 .6544 3799 .5825 .7765 .6657 3177 .5788 .7840 .6659 2676
micro .8010 .8010 .8010 40160 .8103 .8103 .8103 35226 .8010 .8010 .8010 23082 .8037 .8037 .8037 18384 .8044 .8044 .8044 15676
macro .7456 .7964 .7603 40160 .7561 .7993 .7713 35226 .7504 .7946 .7661 23082 .7534 .7967 .7691 18384 .7522 .7981 .7686 15676

Table 11: Performance of the models trained on a randomly-sampled dataset having the

same distribution as the corresponding dataset filtered by the number of project stars.

STAR FILTER 50 Star 100 Star 500 Star 1000 Star 1500 Star
Prec Rec F1 Supp Prec Rec F1 Supp Prec Rec F1 Supp Prec Rec F1 Supp Prec Rec F1 Supp

bug .9075 .7944 .8472 23124 .9097 .7890 .8450 20507 .9101 .7891 .8453 13715 .9103 .7906 .8462 11079 .9120 .7734 .8370 9551
enhancement .8509 .7481 .7962 11537 .8511 .7428 .7933 9588 .8282 .7263 .7739 5568 .8271 .7081 .7630 4128 .8267 .6831 .7481 3449

question .4600 .8176 .5888 5499 .4681 .8277 .5980 5131 .4971 .8252 .6204 3799 .5042 .8297 .6272 3177 .4812 .8498 .6144 2676
micro .7843 .7843 .7843 40160 .7820 .7820 .7820 35226 .7799 .7799 .7799 23082 .7788 .7788 .7788 18384 .7666 .7666 .7666 15676
macro .7395 .7867 .7441 40160 .7430 .7865 .7454 35226 .7451 .7802 .7465 23082 .7472 .7761 .7455 18384 .7399 .7688 .7332 15676

Table 12: Confusion matrix of the model trained on the star-filtered dataset.

Star Filter 1500
Prediction

Gold label bug enhancement question
bug 7647 (80%) 648 (7%) 1256 (13%)

enhancement 327 (9%) 2743 (80%) 379 (11%)
question 285 (11%) 260 10%) 2131 (79%)

Table 13: Confusion matrix of the model trained on the randomly-sampled dataset.

Random Sampling
Prediction

Gold Label bug enhancement question
bug 7321 (77%) 353 (4%) 1877 20%)

enhancement 421 (12%) 2368 (69%) 660 (19%)
question 257 (10%) 141 (5%) 2278 (85%)

is statistically significant, as proven with a McNemar test [45, 46] performed
to compare their output on the test set (p<.05).8 However, the improvement
is small and might not result in a more useful behavior of the classifier in
practice.

Applying the age filter to the GitHub dataset. We set up the same
set of experiments with the filter based on the age of a GitHub project. As

8
McNemar’s test is a non-parametric test that can be used to compare classification

algorithms [47].

22

done for the star filter, we compare the performance of resulting models with
a random sampling of the original training set, preserving the distribution,
and test the model on the same filtered test set. We obtain three datasets,
with the distributions illustrated in Table 14. We report the results of our
experiments in Tables 15 and 16. We also report the confusion matrices for
both settings in Tables 17 and 18.

Table 14: Distribution of the dataset after filtering by project age.

AGE FILTER Age>4 4>Age>1 Age>1
TRAIN TEST TRAIN TEST TRAIN TEST

bug 126935 (58%) 14489 (58%) 208936 (48%) 23870 (48%) 335871 (51%) 38359 (50%)
enhancement 62499 (28%) 7199 (28%) 204102 (47%) 23382 (46%) 266601 (41%) 30581 (41%)

question 30945 (14%) 3640 (14%) 24767 (5%) 3143 (6%) 55712 (8%) 6783 (9%)
total 220379 25328 437805 50395 658184 75723

Table 15: Performance of the models trained on the dataset filtered by project age and

than undersampled with a non-minority strategy (tested on the filtered test set).

AGE FILTER Age>4 4>Age>1 Age>1
Prec Rec F1 supp Prec Rec F1 Supp Prec Rec F1 Supp

bug .9043 .8039 .8512 14489 .8938 .7946 .8413 23870 .9005 .7992 .8468 38359
enhancement .7969 .7908 .7938 7199 .8797 .8428 .8609 23382 .8690 .8358 .8521 30581

question .5352 .7799 .6347 3640 .3477 .7493 .4750 3143 .4313 .7799 .5554 6783
micro .7967 .7967 .7967 28471 .8141 .8141 .8141 50395 .8123 .8123 .8123 75723
macro .7454 .7915 .7599 28471 .7071 .7956 .7257 50395 .7336 .8050 .7515 75723

Table 16: Performance of the models trained on a randomly-sampled dataset having the

same distribution as the corresponding dataset filtered by project age (tested on the filtered

test set).

AGE FILTER Age>4 4>Age>1 Age>1
Prec Rec F1 supp Prec Rec F1 Supp Prec Rec F1 Supp

bug .8983 .7943 .8431 14489 .8919 .7865 .8359 23870 .8975 .7941 .8427 38359
enhancement .8304 .7414 .7834 7199 .8745 .8541 .8642 23382 .8720 .8316 .8513 30581

question .4834 .8088 .6051 3640 .3525 .7299 .4754 3143 .4226 .7861 .5497 6783
micro .7813 .7813 .7813 28471 .8143 .8143 .8143 50395 .8086 .8086 .8086 75723
macro .7374 .7815 .7439 28471 .7063 .7902 .7252 50395 .7307 .8039 .7479 75723

The results are comparable to what observed for the stars-based filter.
Once again, as can be seen from the confusion matrices, the performance
improvement can be attributed to the increased precision of the question

class. Also in this case, the di↵erence in the classifiers outcome is statistically
significant, as proven by the results of a McNemar test (p<.05). However,
the improvement is even smaller than the one observed for the stars-based
filter, thus suggesting no tangible enhancement of the classifier in practice.

23

Table 17: Confusion matrix of the model trained on the age-filtered dataset.

Age Filter>4
Prediction

Gold Label bug enhancement question
bug 11648 (80%) 1108 (8%) 1733 (12%)

enhancement 774 (11%) 5693 (79%) 732 (10%)
question 459 (13%) 343 (9%) 2838 (78%)

Table 18: Confusion matrix of the model trained on the randomly-sampled dataset.

Random Sampling
Prediction

Gold Label bug enhancement question
bug 11508 (79%) 804 (6%) 2177 (15%)

enhancement 893 (12%) 5337 (74%) 893 (13%)
question 410 (11%) 286 (8%) 2944 (81%)

Removing multi-label issues from the GitHub dataset. As a third
quality filter, we removed from the dataset the issues for which more than one
label were provided. This information was obtained by querying the GitHub
API. Other than removing the multi-labeled issues, we also removed those
issues for which we could not retrieve this information using the GitHub API
(i.e., all those issue that had been removed since the creation of the dataset).
As a result of the application of this filtering criterion, 3% of the issues were
removed from the original dataset and we obtained a new dataset containing
only issues with a single label; the new distribution is shown in Table 19.

Table 19: Distribution of the GitHub dataset after removing the multi-class examples and

the unavailable ones.

Remove Multi-Class
Train Test

bug 281732 (49%) 32106 (49%)
enhancement 249429 (43%) 28065 (43%)

question 49974 (9%) 5780 (9%)
total 581135 65951

Then, we trained the issue classifier on the filtered dataset. The model
performances are shown in Table 20 and the related confusion matrix in
Table 21. Compared to the performance obtained with the unfiltered dataset

24

Table 20: Results of training and testing after removing issues with more than one label

from the GitHub dataset.

Remove Multi-Class
Precision Recall F1 Support

bug .8832 .9010 .8920 32106
enhancement .8882 .8893 .8887 28065

question .6814 .6014 .6389 5780
micro .8697 .8697 .8697 65951
macro .8176 .7972 .8065 65951

Table 21: Confusion matrix of the predictions from the classifier trained without multi-

class issues.

Prediction
Gold Label bug enhancement question

bug 28926 (90%) 2294 (7%) 886 (3%)
enhancement 2369 (8%) 24957 (89%) 739 (3%)

question 1457 (25%) 847 (15%) 3476 (60%)

(see the RoBERTa classifier performance reported in Table 7), we observe an
improvement in the overall F1, both micro (from .8591 to .8697) and macro
(from .7905 to .8065). This is also true for each class. In particular, for the
most di�cult class to predict, i.e. question, we observe an improvement of
F1 (from .6120 to .6389), precision (from .6760 to .6814), and recall (from
.5591 to .6014). While a↵ecting only 3% of the issues, the application of
this filtering criterion results in the biggest performance improvement. Still,
the overall gain in performance can be considered negligible.

Applying the combined filters to the GitHub dataset. The deci-
sion to use filters separately was done on purpose to control for confounding
factors. In other words, we want to test the impact on data quality for each
of the filters that operationalize our data quality criteria. Nevertheless, for
completeness, we experimented with the filtered dataset obtained by com-
bining all the filters. Specifically, we combined the filters using the threshold
that led to better performance improvement, i.e. Age>4, Stars>1500, and
removal of multi-label issues.

We report the results on the dataset obtained using the combined filters in
Table 22. As done for the individual filters, we compared the results obtained
using a Randomly-sampled dataset with the same distribution observed for
the filtered dataset (see Table 23). As already observed for the individual
filters, the improvement in the overall F1 is negligible.

25

Table 22: Performance of the model trained on the filtered dataset using the most restric-

tive filters.

Prec Rec F1 Supp
bug 0.9032 0.7751 0.8342 2094
enhancement 0.7763 0.8290 0.8018 1164
question 0.5587 0.7617 0.6446 600
microavg 0.7893 0.7893 0.7893 3858
macroavg 0.7461 0.7886 0.7602 3858

Table 23: Performance of the model trained on the random sampled dataset, having the

same distribution as the dataset filtered using most restrictive filters.

Prec Rec F1 Supp
bug 0.8935 0.7937 0.8407 2094
enhancement 0.8496 0.7569 0.8005 1164
question 0.5140 0.8233 0.6329 600
microavg 0.7872 0.7872 0.7872 3858
macroavg 0.7524 0.7913 0.7580 3858

6.2. Experimenting with the Jira dataset

In the following, we report the results concerning our experiments with
the Jira dataset [16]. As already discussed in Section 4.5, this dataset guar-
antees the adopted quality criteria by design. As such, we do not apply any
filtering in this case. The question class in the Jira dataset is heavily under-
represented, with question-labeled issues representing <1% of the dataset.
We trained our RoBERTa model using 90% of the Jira dataset and tested
it using the remaining 10%. We report the performance of the classifier in
Table 24. To address the problem of imbalanced training data, we also exper-
imented with undersampling. However, the related attempts did not result
in improved performance; therefore, we do not report these results here.

The performance of the model trained on the Jira dataset is comparable
to the one obtained with the GitHub dataset, except for the question class.
The smaller number of questions has a significant impact on the model per-
formance, resulting in a lower F1, precision, and recall for all classes except
for bug.

As a further analysis, we performed a follow-up experiment training in-
dividual models for each of the four projects containing at least 1,000 issues
labeled as question. The projects included in this machine-learning experi-
ment are Apache, Jira, MongoDB and Sonatype. The results are reported in
Table 25. Overall, the performance obtained by training on the individual

26

Table 24: Performance of the system trained on the Jira dataset, evaluated on 10% of the

dataset (with the same distribution of the overall dataset).

RoBERTa
Title + Body

Class Precision Recall F1 Support
bug .9378 .9413 .9395 152252

enhancement .8540 .8569 .8554 62831
question .6402 .3766 .4742 879

micro .9136 .9136 .9136 215962
macro .8116 .7240 .7564 215962

Table 25: Performances of Jira project-specific training and testing.

Jira project Apache Jira MongoDB Sonatype
prec rec f1 supp prec rec f1 supp prec rec f1 supp prec rec f1 supp

bug .8919 .7602 .8208 52310 .9312 .8173 .8705 13114 .8553 .6978 .7686 4812 .9560 .8354 .8916 650
enhancement .7685 .8000 .7839 31267 .9322 .9001 .9159 13845 .7964 .8161 .8061 3877 .7087 .8831 .7864 248

question .0300 .9009 .0581 222 .0951 .9057 .1721 244 .1370 .7348 .2309 181 .8398 .9500 .8915 160
micro .7754 .7754 .7754 83799 .8602 .8602 .8602 27203 .7503 .7503 .7503 8870 .8639 .8639 .8639 1058
macro .5635 .8204 .5543 83799 .6528 .8744 .6528 27203 .5962 .7496 .6019 8870 .8348 .8895 .8565 1058

projects is lower than the one achieved using the full dataset; the only ex-
ception was observed for the Sonatype project: in this case, we obtained an
F1 of .8915 for the question class, while for bug and enhancement the F1 is
still lower than the ones obtained for the full dataset.

7. Discussion

The use of BERT-based models in software engineering is not new. Specif-
ically, BERT was used to automatically classify the sentiment of technical
texts such as Stack Overflow posts or GitHub comments [48, 49]. As far
as GitHub issue tagging is concerned, Wang et al. [25] compared the per-
formance of a pre-trained contextual language representation obtained with
BERT with the performance achieved by traditional deep-learning models
leveraging GLoVe [50] for the initialization of word embeddings. They found
that BERT outperforms other deep learning language models when large
training data is used. Conversely, Convolutional Neural Networks perform
better than BERT in presence of small-size training data. In their study,
Wang et al. [25] experiment with the BERT model originally developed by
Google [9, 12] to recommend a label for GitHub issues, i.e. their models
recommend k possible tags for any issue. As such, the performance of their
recommender is measured using F1-score@k, which impairs direct compari-
son with the performance obtained in our study where a classification task

27

is addressed. As a further di↵erence, Wang et al. trained their model sepa-
rately for each project. Furthermore, in our study we advance the state of the
art by also experimenting with AlBERTo and RoBERTa, as well as with the
BERT large version. RoBERTa was also leveraged by Izadi et al. [26] for pre-
dicting both the type and priority of an issue. Specifically, they model issue
type prediction as a classification task and fine-tuned RoBERTa on a dataset
of 817,743 GitHub issues from over 60K repositories labeled as bug report

(362K), enhancement (342K), and support/documentation (112K). Similarly
to what we do in our study, they rely on the textual information contained
in each issue title and body and achieve an overall accuracy of 82%, with F1
equal to .85, .84, and .67 for bug, enhancement and documentation/support,
respectively.

However, regardless of algorithmic choices, the quality of ML-based sys-
tems can su↵er considerably if models are trained on bad-quality data [27, 28].
The results of the analysis of the misclassified cases reported in Section 5.2
suggest that a shared understanding of the issue labeling criteria is essential
to ensure consistency of the labels in the training data.

Inspired by the findings of this qualitative analysis, we designed and op-
erationalized data quality criteria to filter out issues based on the presence
of multiple labels, the project star count, and the project age. We evaluated
the impact of applying such data quality filters on the model performance.
Unfortunately, this did not result in an improved performance. The main
cause of misclassification in all settings remains the confusion between ques-

tion and other labels. We also experimented with project-specific training
of issue classifier, without observing a significant improvement in the per-
formance. The only project for which we observe a good performance for
all classes is Sonatype. By inspecting the project website, we found that
the creation of issues is guided by a wizard that ensures consistency in the
labeling9.

Our findings suggest that filtering projects included in the training set to
improve data quality do not necessarily result in a substantial improvement
of model performance. These results are apparently in contrast with recent
findings by Wu et al. [15], who demonstrate how the performance of models
can be substantially improved by enhancing the quality of training data.
However, we point out that the strategy followed by these authors to improve
the quality of their datasets is not directly comparable with ours. Indeed,
they fixed bug labeling issues by means of a costly manual annotation process,
involving trained professionals and a rigorous annotation protocol. On the

9
https://support.sonatype.com/hc/en-us/requests/new

28

other hand, we tried to clean our dataset – thus limiting uncertain labels –
through automated filtering procedures based on the operationalization of
generic data quality criteria. Moreover, we note that – despite some clear
similarities – the classification tasks addressed in the two studies are di↵erent.
In particular, Wu et al. aim to separate security bug reports from other kinds
of bug reports. For this task, they claim that manual e↵ort is still required
because current automated approaches do not handle it well. Our negative
results suggest that this might be the case also for the issue labeling task: in
future work, we set out to confirm this hypothesis by exploring the impact
of manual issue label correction on model performance.

8. Conclusion

In this paper, we exploit pre-trained language models for automatic issue
classification. In particular, we experimented with BERT and its variants and
found that RoBERTa-based classifiers achieve state-of-the-art performance
in automatic issue labeling. Then, we also investigate the impact of data
quality on the classifier performance using filters that operationalize generic
data quality criteria. None of the attempts to improve the quality of data had
a significant e↵ect on the model performance. We identify the weak definition
of the question label as the main threat to construct validity a↵ecting the
overall data quality.

This study confirms that the use of noisy data has a detrimental impact
on model performance. Indeed, while the e↵ects of random errors in data can
be tamed by collecting more data, the existence of systematic and conceptual
flaws in data cannot be overcome statistically and necessarily entail defects
in the resulting ML models.

9. Acknowledgements

This research was co-funded by the NRRP Initiative, Mission 4, Compo-
nent 2, Investment 1.3 - Partnerships extended to universities, research cen-
tres, companies and research D.D. MUR n. 341, 15.03.2022 – Next Genera-
tion EU (“FAIR - Future Artificial Intelligence Research”, code PE00000013,
CUP H97G22000210007), (“SERICS - SEcurity and Rights In the CyberSpace”,
code PE0000014 , CUP H93C22000620001’), the Complementary National
Plan PNC-I.1 - Research initiatives for innovative technologies and pathways
in the health and welfare sector - D.D. 931 of 06/06/2022 (“DARE - DigitAl
lifelong pRevEntion initiative”, code PNC0000002, CUP B53C22006420001),
and by the PRIN 2022 call of MUR (“QualAI: Continuous Quality Improve-
ment of AI-based Systems”, CUP H53D23003510006).

29

References

[1] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, Y.-G. Guéhéneuc, Is
it a bug or an enhancement? a text-based approach to classify change
requests, in: Proc. of the 2008 Conf. of the Center for Advanced Studies
on Collaborative Research: Meeting of Minds, CASCON ’08, ACM, New
York, NY, USA, 2008. doi:10.1145/1463788.1463819.
URL https://doi.org/10.1145/1463788.1463819

[2] K. Herzig, S. Just, A. Zeller, It’s not a bug, it’s a feature: How
misclassification impacts bug prediction, in: 2013 35th International
Conference on Software Engineering (ICSE), 2013, pp. 392–401. doi:
10.1109/ICSE.2013.6606585.

[3] N. Pandey, D. Sanyal, A. Hudait, A. Sen, Automated classification of
software issue reports using machine learning techniques: an empirical
study, Innovations in Systems and Software Engineering 13 (12 2017).
doi:10.1007/s11334-017-0294-1.

[4] O. Levy, Y. Goldberg, Neural word embedding as implicit matrix
factorization, in: Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence,
K. Q. Weinberger (Eds.), Advances in Neural Information Processing
Systems, Vol. 27, Curran Associates, Inc., 2014.
URL https://proceedings.neurips.cc/paper/2014/file/
feab05aa91085b7a8012516bc3533958-Paper.pdf

[5] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean, Distributed rep-
resentations of words and phrases and their compositionality, in: Pro-
ceedings of the 26th International Conference on Neural Information
Processing Systems - Volume 2, NIPS’13, Curran Associates Inc., Red
Hook, NY, USA, 2013, p. 3111–3119.

[6] R. Kallis, A. Di Sorbo, G. Canfora, S. Panichella, Predicting issue
types on github, Science of Computer Programming 205 (2021) 102598.
doi:https://doi.org/10.1016/j.scico.2020.102598.
URL https://www.sciencedirect.com/science/article/pii/
S0167642320302069

[7] R. Kallis, A. Di Sorbo, G. Canfora, S. Panichella, Ticket tagger: Ma-
chine learning driven issue classification, in: 2019 IEEE Int’l. Conf
on Software Maintenance and Evolution (ICSME), 2019, pp. 406–409.
doi:10.1109/ICSME.2019.00070.

30

[8] A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, Bag of tricks for e�cient
text classification, in: Proc. of the 15th Conf. of the European Chapter
of the Association for Computational Linguistics, ACL, Valencia, Spain,
2017, pp. 427–431.
URL https://aclanthology.org/E17-2068

[9] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of
deep bidirectional transformers for language understanding, in: Proc.
of the 2019 Conf. of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, ACL,
Minneapolis, Minnesota, 2019, pp. 4171–4186. doi:10.18653/v1/N19-
1423.
URL https://aclanthology.org/N19-1423

[10] R. Kallis, O. Chaparro, A. Di Sorbo, S. Panichella, Nlbse’22 tool com-
petition, in: Proceedings of The 1st International Workshop on Natural
Language-based Software Engineering (NLBSE’22), 2022.

[11] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, R. Soricut, Al-
bert: A lite bert for self-supervised learning of language representations
(2020). arXiv:1909.11942.

[12] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, V. Stoyanov, Roberta: A robustly optimized bert pre-
training approach (2019). arXiv:1907.11692.

[13] S. Biswas, M. J. Islam, Y. Huang, H. Rajan, Boa meets python: A
boa dataset of data science software in python language, in: 2019
IEEE/ACM 16th International Conference on Mining Software Reposi-
tories (MSR), 2019, pp. 577–581. doi:10.1109/MSR.2019.00086.

[14] N. Munaiah, S. Kroh, C. Cabrey, M. Nagappan, Curating
github for engineered software projects (12 2016). doi:10.7287/
PEERJ.PREPRINTS.2617.

[15] X. Wu, W. Zheng, X. Xia, D. Lo, Data quality matters: A case
study on data label correctness for security bug report prediction,
IEEE Transactions on Software Engineering 48 (07) (2022) 2541–2556.
doi:10.1109/TSE.2021.3063727.

[16] L. Montgomery, C. M. Lüders, W. Maalej, An alternative issue tracking
dataset of public jira repositories, CoRR abs/2201.08368 (2022). arXiv:
2201.08368.
URL https://arxiv.org/abs/2201.08368

31

[17] G. Colavito, F. Lanubile, N. Novielli, Issue-Report-Classification-Using-
RoBERTa (3 2022).
URL https://github.com/collab-uniba/Issue-Report-
Classification-Using-RoBERTa

[18] V. Sanh, L. Debut, J. Chaumond, T. Wolf, Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter, CoRR abs/1910.01108
(2019). arXiv:1910.01108.
URL http://arxiv.org/abs/1910.01108

[19] T. F. Bissyandé, D. Lo, L. Jiang, L. Réveillère, J. Klein, Y. L. Traon,
Got issues? who cares about it? a large scale investigation of is-
sue trackers from github, in: 2013 IEEE 24th International Sympo-
sium on Software Reliability Engineering (ISSRE), 2013, pp. 188–197.
doi:10.1109/ISSRE.2013.6698918.

[20] S. Panichella, G. Bavota, M. D. Penta, G. Canfora, G. Antoniol,
How developers’ collaborations identified from di↵erent sources tell us
about code changes, in: 2014 IEEE International Conference on Soft-
ware Maintenance and Evolution, 2014, pp. 251–260. doi:10.1109/
ICSME.2014.47.

[21] Q. Fan, Y. Yu, G. Yin, T. Wang, H. Wang, Where is the road for is-
sue reports classification based on text mining?, in: 2017 ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement (ESEM), 2017, pp. 121–130. doi:10.1109/ESEM.2017.19.

[22] J. L. Cánovas Izquierdo, V. Cosentino, B. Rolandi, A. Bergel, J. Cabot,
Gila: Github label analyzer, in: 2015 IEEE 22nd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER),
2015, pp. 479–483. doi:10.1109/SANER.2015.7081860.

[23] Z. Liao, D. He, Z. Chen, X. Fan, Y. Zhang, S. Liu, Exploring the char-
acteristics of issue-related behaviors in github using visualization tech-
niques, IEEE Access 6 (2018) 24003–24015, acceptance from VoR OA
article however no CC licence on article (see p1 of VoR). Applied ’no
exception’ as article doesn’t meet our definition for Gold exception. ET
14/1/20 ET. doi:10.1109/ACCESS.2018.2810295.

[24] Y. Zhou, Y. Tong, R. Gu, H. C. Gall, Combining text mining and data
mining for bug report classification, 2014 IEEE International Conference
on Software Maintenance and Evolution (2014) 311–320.

32

[25] J. Wang, X. Zhang, L. Chen, How well do pre-trained contex-
tual language representations recommend labels for github is-
sues?, Knowledge-Based Systems 232 (2021) 107476. doi:https:
//doi.org/10.1016/j.knosys.2021.107476.
URL https://www.sciencedirect.com/science/article/pii/
S0950705121007383

[26] M. Izadi, K. Akbari, A. Heydarnoori, Predicting the objective and
priority of issue reports in software repositories., Empir Software Eng
27 (2022). doi:10.1007/s10664-021-10085-3.
URL https://link.springer.com/article/10.1007/s10664-021-
10085-3

[27] A. Halevy, P. Norvig, F. Pereira, The Unreasonable E↵ectiveness of
Data, IEEE Intelligent Systems 24 (2) (2009) 8–12. doi:10.1109/
MIS.2009.36.
URL http://ieeexplore.ieee.org/document/4804817/

[28] C. Kästner, Data Quality for Building Production ML Systems (Feb.
2021).
URL https://ckaestne.medium.com/data-quality-for-building-
production-ml-systems-2e0cc7e6113f

[29] N. Sambasivan, S. Kapania, H. Highfill, D. Akrong, P. Paritosh, L. M.
Aroyo, “Everyone wants to do the model work, not the data work”:
Data Cascades in High-Stakes AI, in: Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems, ACM, Yokohama
Japan, 2021, pp. 1–15. doi:10.1145/3411764.3445518.
URL https://dl.acm.org/doi/10.1145/3411764.3445518

[30] G. Press, Cleaning Big Data: Most Time-Consuming, Least Enjoyable
Data Science Task, Survey Says.
URL https://www.forbes.com/sites/gilpress/2016/03/23/data-
preparation-most-time-consuming-least-enjoyable-data-
science-task-survey-says/

[31] N. Hynes, D. Sculley, M. Terry, The data linter: Lightweight automated
sanity checking for ML data sets, 2017.
URL http://learningsys.org/nips17/assets/papers/paper 19.pdf

[32] T. Rekatsinas, X. Chu, I. F. Ilyas, C. Ré, HoloClean: Holistic Data
Repairs with Probabilistic Inference, arXiv:1702.00820 [cs] (Feb. 2017).
URL http://arxiv.org/abs/1702.00820

33

[33] A. Jain, H. Patel, L. Nagalapatti, N. Gupta, S. Mehta, S. Guttula,
S. Mujumdar, S. Afzal, R. Sharma Mittal, V. Munigala, Overview and
Importance of Data Quality for Machine Learning Tasks, in: Proceed-
ings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, ACM, Virtual Event CA USA, 2020, pp.
3561–3562. doi:10.1145/3394486.3406477.
URL https://dl.acm.org/doi/10.1145/3394486.3406477

[34] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
D. Damian, The promises and perils of mining GitHub, in: Proceedings
of the 11th Working Conference on Mining Software Repositories - MSR
2014, ACM Press, Hyderabad, India, 2014, pp. 92–101. doi:10.1145/
2597073.2597074.
URL http://dl.acm.org/citation.cfm?doid=2597073.2597074

[35] G. Gousios, D. Spinellis, Mining Software Engineering Data from
GitHub, in: 2017 IEEE/ACM 39th International Conference on Soft-
ware Engineering Companion (ICSE-C), IEEE, Buenos Aires, Ar-
gentina, 2017, pp. 501–502. doi:10.1109/ICSE-C.2017.164.
URL http://ieeexplore.ieee.org/document/7965403/

[36] M. AlMarzouq, A. AlZaidan, J. AlDallal, Mining GitHub for
research and education: challenges and opportunities, Interna-
tional Journal of Web Information Systems 16 (4) (2020) 451–473.
doi:10.1108/IJWIS-03-2020-0016.
URL https://www.emerald.com/insight/content/doi/10.1108/
IJWIS-03-2020-0016/full/html

[37] I. Grigorik, Gh archive.
URL https://www.gharchive.org/

[38] Google bigquery.
URL https://cloud.google.com/bigquery/

[39] G. Colavito, F. Lanubile, N. Novielli, Issue report classification using
pre-trained language models, in: 2022 IEEE/ACM 1st International
Workshop on Natural Language-Based Software Engineering (NLBSE),
IEEE Computer Society, Los Alamitos, CA, USA, 2022, pp. 29–32.
doi:10.1145/3528588.3528659.
URL https://doi.ieeecomputersociety.org/10.1145/
3528588.3528659

34

[40] F. Sebastiani, Machine learning in automated text categorization, ACM
Comput. Surv. 34 (1) (2002) 1–47. doi:10.1145/505282.505283.
URL https://doi.org/10.1145/505282.505283

[41] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
D. Damian, The promises and perils of mining github, in: Proceedings
of the 11th Working Conference on Mining Software Repositories, MSR
2014, Association for Computing Machinery, New York, NY, USA, 2014,
p. 92–101. doi:10.1145/2597073.2597074.
URL https://doi.org/10.1145/2597073.2597074

[42] B. Vasilescu, S. van Schuylenburg, J. Wulms, A. Serebrenik, M. G.
van den Brand, Continuous integration in a social-coding world: Em-
pirical evidence from github, in: 2014 IEEE International Conference
on Software Maintenance and Evolution, 2014, pp. 401–405. doi:
10.1109/ICSME.2014.62.

[43] P. Bojanowski, E. Grave, A. Joulin, T. Mikolov, Enriching word vectors
with subword information (2016). doi:10.48550/ARXIV.1607.04606.
URL https://arxiv.org/abs/1607.04606

[44] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, M. Zhou, Codebert: A pre-trained model for program-
ming and natural languages (2020). arXiv:2002.08155.

[45] McNemar’s Test, in: W. Kirch (Ed.), Encyclopedia of Public Health,
Springer Netherlands, Dordrecht, 2008, pp. 886–886. doi:10.1007/978-
1-4020-5614-7 2075.

[46] Q. McNemar, Note on the sampling error of the di↵erence between corre-
lated proportions or percentages, Psychometrika 12 (2) (1947) 153–157.
doi:10.1007/BF02295996.

[47] S. L. Salzberg, On Comparing Classifiers: Pitfalls to Avoid and a Recom-
mended Approach, Data Mining and Knowledge Discovery 1 (3) (1997)
317–328. doi:10.1023/A:1009752403260.

[48] E. Biswas, M. E. Karabulut, L. Pollock, K. Vijay-Shanker, Achieving re-
liable sentiment analysis in the software engineering domain using bert,
in: 2020 IEEE Int’l. Conf. on Software Maintenance and Evolution (IC-
SME), 2020, pp. 162–173. doi:10.1109/ICSME46990.2020.00025.

[49] H. Batra, N. S. Punn, S. K. Sonbhadra, S. Agarwal, Bert-based senti-
ment analysis: A software engineering perspective, Database and Expert

35

Systems Applications (2021) 138–148doi:10.1007/978-3-030-86472-
9 13.
URL http://dx.doi.org/10.1007/978-3-030-86472-9 13

[50] J. Pennington, R. Socher, C. D. Manning, Glove: Global vectors for
word representation, in: Empirical Methods in Natural Language Pro-
cessing (EMNLP), 2014, pp. 1532–1543.

36

