
Noname manuscript No.
(will be inserted by the editor)

Do Attention and Memory Explain the
Performance of Software Developers?

Valentina Piantadosi · Simone Scalabrino ·
Alexander Serebrenik · Nicole Novielli ·
Rocco Oliveto

Received: date / Accepted: date

Abstract Writing and modifying source code are core activities in software de-
velopment and evolution. The outcome of a coding task in terms of quality may
depend on several aspects, such as the difficulty of the task or the complexity of
the system. Besides, it is well known that individual characteristics of developers,
like the programming experience, play a lead role in this. Recent work started
exploring the influence that cognitive human aspects have on the ability of de-
velopers to acquire information from the source code (e.g., finding security blind
spots). However, it is still unknown to what extent such aspects influence their
ability of completing coding tasks.

In this paper, we theorize that two cognitive human aspects, attention and
memory, play a role in predicting the outcome of a coding task. We conducted
a controlled experiment involving 32 participants (18 bachelor students, 9 mas-
ter students, 2 Ph.D. students. and 3 practitioners), in which we asked them to
complete two bug-fixing and two feature implementation tasks. We measured, for
each of them, three attention-related factors (i.e., alerting, orienting, and exec-
utive control) and two memory-related ones (i.e., working memory and immedi-
ate recall) through well-established psychometric tests. Finally, we investigated to
what extent these factors can explain the correctness, the readability and the time
taken to complete a task in function of such factors. Our results show that all the
attention- and memory-related factors achieved very low correlation with correct-
ness and time. Indeed, the number of years of programming experience is far more
important than all the other variables we considered for explaining the correct-

V. Piantadosi and S. Scalabrino and R. Oliveto
University of Molise, Italy
E-mail:
{valentina.piantadosi, simone.scalabrino, rocco.oliveto}@unimol.it

Alexander Serebrenik
Eindhoven University of Technology, The Netherlands
E-mail: a.serebrenik@tue.nl

Nicole Novielli
University of Bari, Italy
E-mail: nicole.novielli@uniba.it

Nicole Novielli
Preprint - Accepted for publication in the
Empirical Software Engineering Journal (EMSE), 2023

2 Valentina Piantadosi et al.

ness and the time required to complete a task. Moreover, we found a significant
relationship between orienting (an attention-related factor) and code readability.

Keywords Cognitive Human Factors · Coding Task Outcome Prediction ·
Empirical Software Engineering

1 Introduction

Software development and evolution are complex activities involving writing and
modification of the source code. Developers are continuously presented with cod-
ing tasks in their daily activities, such as implementing a new feature or fixing
bugs. Being able to estimate the time required to complete a coding task and
predict its internal and external quality (e.g., correctness of coding tasks) would
allow to better allocate the effort of a development team. Such a problem is not
new in the literature. Defect prediction, for example, is an active field of software
engineering research aiming at inferring if a given software component contains
bugs (Zimmermann et al., 2009; He et al., 2012; Rahman et al., 2012; Li et al.,
2018; Thota et al., 2020). Similarly, previous work aimed at predicting the time
needed to complete tasks, such as fixing bugs (Zhang et al., 2013; Bhattacharya
and Neamtiu, 2011; Blackburn et al., 1996).

In the last decade, researchers have started including in such models developer-
related factors, such as their attention focus (Posnett et al., 2013) or the scattering
of changes they performed (Di Nucci et al., 2017). The majority of existing models
for predicting the time and the quality of a coding task, however, only take into
account superficial characteristics of developers, and they neglect the role that
cognitive human aspects can have on the final outcome of a coding task. Cogni-
tive human aspects are measurable aspects of cognitive human functions, such as
attention or memory.

The literature in psychology reports that cognitive human aspects correlate
with the outcome of several human activities, even complex ones. More specifically,
attention- and memory-related factors are shown to be related to activities that
require problem-solving. For example, several studies (Weaver et al., 2009; Posner,
1980; Eriksen and Eriksen, 1974) used attention-related factors to predict the
outcome in driving, while others have shown that both attention and memory
correlate with the performance in mathematics (Musso et al., 2012; Wei et al.,
2012; Passolunghi et al., 2007).

In this paper, we theorize that cognitive human aspects, and, specifically,
attention- and memory-related ones, play a role in explaining the outcome of
coding tasks in terms of time required to complete a task, and quality of the final
solution, here measured in terms of correctness (external quality) and code read-
ability (internal quality). As for attention, we focus on three factors: alerting (i.e.,
the ability of gaining and maintaining an alert state), orienting (i.e., the ability of
selecting information from sensory input), and executive control (i.e., the ability
of dealing with conflict among responses); as for memory, we consider immediate
recall (i.e., the ability of recalling information acquired in the short term), and
working memory (used for elaborating problem-solving strategies (Baddeley, 1983;
Shneiderman and Mayer, 1979)). We decided to focus on these cognitive human
aspects because Peitek et al. (2018), Siegmund et al. (2014) and Krueger et al.

Do Attention and Memory Explain the Performance of Software Developers? 3

(2020) observed neural activation related to attention and working memory during
coding activities (i.e., program comprehension and code writing).

Proving our theory would pave the way for different future research directions.
First, researchers would be able to define personalized defect prediction models.
Second, specific cognitive training sessions (Oded, 2011) for developers could be
devised, aimed at improving the most important attention- and memory-related
factors to possibly write better code in less time. To test our theory, we conducted
a controlled experiment for answering to the following research questions:

– RQ1: To what extent do attention and memory have an impact on the correct-
ness of the solution of coding tasks?

– RQ2: To what extent do attention and memory have an impact on the time
needed to complete coding tasks?

– RQ3: To what extent do attention and memory have an impact on readability
of the solution of coding tasks?

We involved 32 participants with different backgrounds and asked each of them
to complete two bug fixing and two feature implementation tasks. Since we were
interested in measuring the influence of cognitive human aspects independently
from the context in which such tasks would have been completed (e.g., a specific
software system), we provided developers with stand-alone problems (i.e., not
requiring the knowledge of other software components) that could be solved in
the time we allocated for tasks (30 minutes). We measure attention- and memory-
related factors in isolation to collect information about the personal characteristics
of developers before of the programming tasks given that cognitive human aspects
cannot be measured simultaneously with the programming tasks. We used state-
of-the-art psychometric tests to measure attention- and memory-related factors.
The main objective of our study is to assess whether there are relations between
such variables and three variables related to the outcome of the task: correctness
(percentage of test cases passed), time (minutes required to complete the task)
and readability (computed using the metric by Scalabrino et al. (2018)).

Our results show that the correlation between all the attention- and memory-
related factors and correctness is not statistically significant, both when consid-
ered alone and when combined in regression models. The only developer-related
variable that we found to be significantly related to correctness is programming
experience. On the other hand, we observe a statistically significant relationship
between attention-related factors (alerting, p-value = 0.046 , and orienting, p-
value = 0.031) and code readability. In addition, there is a significant correlation
between a memory-related factor (immediate recall, p-value = 0.013) and time.
While experiments conducted with different and larger samples are required to
further corroborate our findings, our results provide a clear message to future re-
searchers interested in this field: Attention- and memory-related factors should be
investigated with other qualities of software (e.g., familiarity, understandability),
and to the same way, qualities of software should be investigated consider other
cognitive human aspects (e.g., language, intelligence). Also, programming experi-
ence should always be taken into account, since it is significantly related to both
time and correctness.

The remainder of our paper is organized as follows. In Section 2 we provide
the necessary background and we describe the related literature. In Section 3 we
present our theory. In Section 4 we report the design of our study, while in Section

4 Valentina Piantadosi et al.

5 we show the results of our analysis. Section 6 describes the threats to validity,
and Section 7 concludes this paper.

2 Background and Related Work

In this section, we first provide background on psychological notions, such as cog-
nitive functions and aspects. Then, we discuss (i) related work exploring generic
applications of the cognitive aspects (e.g., driving and mathematics), and (ii) pre-
vious applications of cognitive psychology in the software engineering domain.

2.1 Background

In cognitive psychology, the term ’cognition’ refer to the ensemble of thoughts
and ideas and is used to denote the internal mental processes (or cognitive func-
tions). Cognitive functions regulate human perception, reasoning, memory, intu-
ition, thinking, speaking, decision making, and problem solving (Roy, 2013; Ben-
jafield et al., 2010). Such processes cannot be observed directly but they can be
measured indirectly through psychometrics, by using specific tests. Psychometric
tests may be, for example, questionnaires or exercises, and they aim at measur-
ing proxy by cognitive functions metrics, such as reaction times, psychological
responses, or real-time neuroimaging (Gellman and Turner, 2013; Allan, 2013).

Cognitive functions can be measured through psychometrics tests and neu-
roimaging. For each cognitive function, there is an appropriate psychometric test.
For example, to measure the working memory, it is possible to use the Symbol
Digit Modalities Test and the List Sorting Working Memory Test (Gershon et al.,
2013). The Brief Test of Adult Cognition by Telephone (BTACT) can be used to
measure different aspects of the cognitive functions (e.g., immediate recall) (Tun
and Lachman, 2006). Attention level can be measured by the Attention Network
Test (ANT)1 (Posner and Petersen, 1990; Fan et al., 2002; Wang et al., 2004).
The proxy variables measured after or during the tests may then be combined to
provide a final measure of an aspect of the cognitive function (what we call, in this
paper, cognitive human aspect). For example, in ANT, reaction times obtained in
different situations are combined to measure the efficiency of the alerting, orient-
ing, and executive control cognitive functions.

These tests have been used in numerous studies. Zelazo et al. (2013) used ANT
to evaluate executive function integrated in the NIH Toolbox Cognition Battery.
Brearly et al. (2018) validated the application of these test between NIH Toolbox
Cognition Battery on iPad and web platforms. Blank et al. (2020) used it to
measure the parenting stress levels with the relationship between parenting stress,
language comprehension, and inhibitory control skill in children. Inhibitory control
is the inhibition of inappropriate stimuli and response (Coulter, 1983). Tiego et al.
(2018) represented inhibitor control as a construct of working memory. Howard
et al. (2014) studied the methodology of Friedman and Miyake (2004) evaluating
four inhibition models. Finally, Lesage et al. (2020) compared the effect of nicotine
dependence and acute nicotinic stimulation. Symbol Digit Modalities Test has been

1 ANT is also known as “Flanker Inhibitory Control and Attention Test” (e.g., in the NIH
Toolbox Cognition Battery))

Do Attention and Memory Explain the Performance of Software Developers? 5

used as an outcome measure for multiple sclerosis (Benedict et al., 2017; Parmenter
et al., 2007; Forn et al., 2013; Genova et al., 2009). In addition, this test has been
proved as reliable as fMRI (Functional Magnetic Resonance Imaging) (Forn et al.,
2009; Silva et al., 2018) in assessing the working memory. BTACT Word List Recall
to evaluate the cognitive functions of chronic dialysis patients (Song et al., 2015),
of patients with traumatic brain injuries (Cairncross et al., 2022), and for multiple
chronic diseases (Shorey and Friedman, 2018).

A different approach used for studying cognitive functions is through cognitive
neuroscience. Functional neuroimaging has been used to find correlations between
the patterns obtained from the brain activity in various processing stages and
different cognitive functions (Roy, 2013).

2.2 The Impact of Cognitive Aspects on Task Performance

Previous work focused on studying cognitive functions in different domains. In
some experiments, researchers tried to explain or predict the outcome of non-
trivial tasks (e.g., driving). In these studies, the authors investigate the relation
between cognitive aspects and task performance of any nature (i.e., linguistic,
mathematical and driving).

In linguistic research, Nour et al. (2019) analyze the attention network tests
in three different groups of participants (i.e., intepreting students, translation stu-
dents, and professional interpreters). Results show the correlation between two
types of language interpretations, i.e., professionals and students, and the atten-
tion networks, i.e., alerting, orienting and executive control. Results show that
each group of participants has specific attention network dynamics: for example,
interpreting students differ from translation students for alertness and executive
network. Woumans et al. (2015) studied the relation between language control
and non-verbal cognitive control between monolingual, Dutch-French unbalanced
bilinguals, balanced bilinguals, and interpreters. Results show that bilinguals can
modulate better the nature and extent of a cognitive control advantage compared
to interpreters and monolinguals.

Other studies used cognitive human aspects in the mathematical field to
evaluate whether there is a correlation between cognitive human aspects and el-
ementary mathematics performance (Halberda et al., 2008; Mundy and Gilmore,
2009; Passolunghi et al., 2007). Passolunghi et al. (2007) searched for precursors of
mathematics learning in the primary school. Their results show that cognitive abil-
ities (i.e., working memory and counting ability) are associated with mathematics
learning. Wei et al. (2012) studied which cognitive human aspects are necessary
to obtain advanced mathematics knowledge and skills. Results show that spatial
abilities and language comprehension have a strong correlation with performance
in advanced mathematics, but the study does not report any significant correlation
with numerical processing. Musso et al. (2012) also consider interactions and the
influence of cognitive human aspects on mathematical performances. Results show
a relevance on educational quality, improvement, and accountability.

Weaver et al. (2009) measure alerting, orienting and executive control efficiency
to predict the driving outcome. In this research area, the Useful Field of View
is used to predict driving performances and it is used to measure the processing
speed. For this reason, Weaver et al. (2009) investigated whether the Useful Field

6 Valentina Piantadosi et al.

of View is equivalent to the Attention Network Test (ANT), taking a positive
result.

Multiple studies demonstrated that the experience in a certain domain can
allow the acquisitions of skills for other domains with similar abilities (Green and
Bavelier, 2007; Bialystok and DePape, 2009; Habib and Besson, 2009; Schellen-
berg, 2004) and that a training of some cognitive functions can change attentional
processes (Lilienthal et al., 2013).

2.3 Cognitive Human Aspects in Software Engineering

In Software Engineering research, previous work measured cognitive human as-
pects and correlated them with developers’ characteristics and software quality.
As described in Section 2.1, cognitive human aspects can be measured through
neuroimaging and psychometric tests. We describe below previous work in both
the areas.

In last decade, neuroimaging techniques have been used to understand the
cognitive processes of programming (Ebisch et al., 2013; Floyd et al., 2017; Huang
et al., 2019; Peitek et al., 2018; Siegmund et al., 2014, 2017; Krueger et al., 2020;
Karas et al., 2021). Specifically, Peitek et al. (2018) and Siegmund et al. (2017)
use these techniques in the program comprehension and Krueger et al. (2020) use
these techniques in the code writing.

Peitek et al. (2018) analyzed whether functional magnetic resonance imaging
(fMRI) can measure program comprehension. The authors invited 17 developers to
comprehend source code in a fMRI (functional magnetic resonance imaging) scan-
ner. Results show that five brain regions are activated during a program compre-
hension task related to working memory, attention level and language processing.
The cognitive effort is reduced given developers’ familiarity with the programming
language. Subsequently, this experiment has been replicated with 11 participants
and results have been confirmed (Siegmund et al., 2017). Siegmund et al. (2017)
used the fMRI with 11 participants while they read a program. Authors perform
manipulations on experimental conditions of beacons and layout to understand
cognitive processes of the bottom-up comprehension. Their results show that bea-
cons facilitate program comprehension tasks and there is less brain activation.

Krueger et al. (2020) use functional magnetic resonance imaging (fMRI) to
compare neural representation of code writing and those of prose writing. Results
show that the prose writing activates the left hemisphere which is associated with
language and the code writing involves the activation of more parts of the right
hemisphere, i.e., attention control, working memory, planning and spatial cogni-
tion. Thus, these results support the evidence that code and prose writing have
different behaviour at mental level.

Sharafi et al. (2021) performed two controlled experiments with 112 students
during a series of development activities, i.e., code comprehension, code review,
and data structure manipulations. During coding activities, students were moni-
tored through neuroimaging activities, i.e., functional near-infrared spectroscopy
(fNIRS), functional magnetic resonance imaging (fMRI) and eye tracking. Results
show that there are different neural representations between programming lan-
guages and natural languages.

Do Attention and Memory Explain the Performance of Software Developers? 7

There are few previous studies in which psychometric tests were used to predict
developers’ performance in tasks. Oliveira et al. (2018) performed an experiment
with 109 developers in which they studied whether developers can detect API se-
curity blindspots in code. An API security blindspots is an error generated from
the developer that can conduct to a violation of the API usage (Cappos et al.,
2014). In addition, Oliveira et al. examined the influence of developer character-
istics (e.g., familiarity with code, cognitive human aspects and personality) on
the ability in detecting blindspots. Their results showed that there is no correla-
tion between cognitive human aspects and the developers’ ability to detect API
blindspots. Recently, Brun et al. (2021) replicated the study by Oliveira et al.
and they obtained similar results. Differently from such studies, in this paper we
focus on the relationship between cognitive functions and the outcome of coding
tasks, which are inherently different because coding tasks require developers to
write code, and not just read it. In another study, Oliveira et al. (2014) exploit
the psychological manipulation to validate the following hypothesis: Software vul-
nerabilities are not part of classical programming heuristics and developers do not
consider them in their programming tasks. Results show that the security is not
a principal activity of developers and this task needs of a certain cognitive effort.

3 Cognitive Factors and Software Development Tasks

We hypothesize that attention- and memory-related factors allow to explain the
correctness of a task, time needed to complete it and code readability of written
code. In the following, we provide more details on our theory.

3.1 Attention

Attention is part of executive functions, as planning, sequencing, and cognitive
flexibility (Crawford, 1998). As explained in Section 1, attention can be controlled
through three key aspects, i.e., alerting, orienting and executive control, that pro-
vide the reactivity to a specific event or stimulus (Posner, 1980).

As reported by Peitek et al. (2018), Siegmund et al. (2017) and Krueger et al.
(2020), the attention is a neural activation both for code writing (Krueger et al.,
2020) and for program comprehension (Peitek et al., 2018; Siegmund et al., 2017).
Thus, attention is an active part of the right hemisphere when a developer writes
and comprehends code. Thus, we conjecture that the attention is important both
for the implementation of a new feature (code writing) and for fixing of a bug
(code comprehension + code writing), and, specifically, we expect that higher
efficiency in the alerting network would positively affect the correctness of coding
tasks. We also conjecture that alerting is an important factor that determines
the time needed to complete a task. If developers have a close deadline, they
experience time pressure (Kuutila et al., 2017; Pinto et al., 2017). The influence of
time pressure on developers’ performance has been studied by Bowrin and King
(2010), who show that it results in the introduction of bugs above all if complex
tasks are used. Let us imagine that the release deadline is in a hour and that a
developer finds a bug. They need to fix it in the minimum time possible. To do
this, the developer cannot be distracted and they need to maintain an alert state.

8 Valentina Piantadosi et al.

We expect that orienting affects the way developers apply coding conventions in
their writing activities and verify whether their own code is readable or not since
they would be more prone to focus on specific areas of the code. Finally, a higher
efficiency in the executive control network would allow developers to complete
tasks better (correctness), more quickly (time) and to implement readable code
(readability) because an individual with a high executive control is able to better
isolate conflicting stimuli (e.g., the ones from the environment from the ones of
the task) and, thus, focus more on the task at hand.

3.2 Memory

In the studies of Peitek et al. (2018), Siegmund et al. (2014), and Krueger et al.
(2020), memory is another neural activation during code writing and the program
comprehension. The immediate recall is part of the episodic memory and this
memory contains a good amount of past events (Schacter et al., 2000). There are
three reasons why memory is important: ability to recall, ability to elaborate so-
lutions and ability to manipulate numbers and words. In the case of coding tasks,
developers with a good ability to recall might be able to better re-use patterns of
solutions applied in the past in similar situations. For example, developers have
to fix a bug and they have fixed a similar bug in past; thus, developers could re-
member the related fix. This would result in saving time and, possibly, in higher
chances of spending more time ensuring that the solution provided is correct (i.e.,
in higher correctness) and also of writing readable code (i.e., high readability). In
addition, the human working memory provides a temporary storage of information
necessary for other cognitive tasks (e.g., reading or problem-solving) (Baddeley,
1983). Specifically, developers might use their working memory to elaborate solu-
tion strategies (Shneiderman and Mayer, 1979). Furthermore, developers with a
strong working memory can also manipulate numbers and words to write readable
code (Peitek et al., 2018). We conjecture that a good working memory allows de-
velopers to complete a coding task both more correctly and more efficiently (i.e.,
shorter time needed). We choose the BTCAT Word List Recall and the Symbol
Digit Modalities Test because these two tests were used in a similar study (Oliveira
et al., 2018): Oliveira et al. measured the influence of developer characteristics on
the ability in detecting blindspots. In addition, factors of attention and of memory
are specific to tasks related to reasoning, memory and problem solving (Roy, 2013;
Benjafield et al., 2010).

4 Design of the Study

The goal of the study is to verify to what extent attention and memory have an
impact on how developers complete coding tasks. The perspective is of researchers
that aim at measuring the influence of cognitive human factors on developers’
performance on the (time needed to complete a task, correctness and readability
of the solution).

Specifically, we formulate and address the following research questions:

– RQ1: To what extent do attention and memory have an impact on the correct-
ness of the solution of coding tasks?

Do Attention and Memory Explain the Performance of Software Developers? 9

– RQ2: To what extent do attention and memory have an impact on the time
needed to complete coding tasks?

– RQ3: To what extent do attention and memory have an impact the readability
of the solution of coding tasks?

To answer our research questions, we conducted a controlled experiment in
which we collect measurements for both the dependent (i.e., correctness, time,
and readability) and the independent variables (attention- and memory- related
factors). Besides such factors, we also include other control variables that are com-
monly associated with the outcome of coding tasks, i.e., task type, task difficulty,
and developer’s programming experience (Juristo and Moreno, 2013).

Task Type. Some developers might find easier to implement a new feature
from scratch, because they do not need to deal with code written by other devel-
opers; some others, instead, might find it easier to start from a partial solution
and modify it to make it work as intended. Therefore, task type may be naturally
associated with the correctness of the solution. We also assume that task type
explains variance in the time needed to complete a task: we expect that bug fixing
tasks generally require more time since most of the code is written; however, this
might strongly depend on the developer, as previously explained by Rasch and
Tosi (1992).

Task Difficulty. Difficulty is naturally associated both with the correctness
of the solution: intuitively, it is more likely that a developer writes bug-free code
when presented with an easy task; similarly, we can assume that easier tasks take
generally less time to be completed. While difficulty is somewhat a subjective
concept and it might depend on the knowledge and experience of the developer,
there are some objective features that make some tasks more difficult than others.
For example, everything else being equal, fixing a bug that involves one line of
code is inherently easier than fixing a bug involving multiple lines of code (Rasch
and Tosi, 1992).

Experience. It is a common understanding that the programming experience
plays a significant role in different kinds of software engineering tasks (Ricca et al.,
2007, 2009; Siegmund et al., 2014). We assume that more experienced developers
can complete tasks more correctly (higher correctness) and more quickly (lower
time). We measure the programming experience by asking developers to report
the number of years of experience (i.e., from their first programming task).

In the following, we describe (i) the context of our experiment, i.e., the partic-
ipants and the tasks, (ii) the procedure we used to collect the data, i.e., how we
run the experiment, and (iii) how we analyzed the collected data to answer our
research questions.

4.1 Context Selection

The context of our study is composed of objects, i.e., coding tasks, and subjects,
i.e., software developers. To select the tasks we used in our study, we relied on
LeetCode,2 an online platform commonly used to exercise coding problems. The
platform proposes a wide range of problems that can be solved by users in many
programming languages. A problem in LeetCode is usually composed by (i) a

2 https://leetcode.com/

10 Valentina Piantadosi et al.

pub l i c boolean match (St r ing word , S t r ing pattern) {
Map<Character , Character> m1 = new HashMap () ;
Map<Character , Character> m2 = new HashMap () ;

f o r (i n t i = 0 ; i < word . l ength () ; ++i) {
char w = word . charAt (i) ;
char p = pattern . charAt (i) ;
i f (!m1. containsKey (w)) m1. put (w, p) ;
i f (!m2m1. containsKey (p)) m2m1. put (p , w) ;
i f (m1. get (w) != p | | m2m1. get (p) != w)

return f a l s e ;
}

r e turn t rue ;
}

Fig. 1: Example of an injected bug in the easy task. We decide to remove the hash
map m2 from the originally correct solution.

description of the problem, and (ii) at least an example of input and expected
output. The developer can, then, implement a solution, manually test it, or submit
it. In the latter case, LeetCode runs a test suite to check if the solution is correct.
To select the participants, instead, we used convenience sampling, and we invited
people within the personal network of the authors and through student channels.
We provide below more details about the selection of tasks and participants.

Task Selection. The two aspects we controlled for in our experiment in terms
of task are the difficulty and the task type. As for the difficulty, we aimed at having
both easy and hard tasks. As for the task type, we wanted to cover two categories
of tasks typically performed during software development and maintenance: feature
implementation and bug fixing. In the first category, developers are requested to
implement code from scratch, while, in the second one, they are provided with a
partially correct solution that they need to modify. We defined a total of 4 tasks
to cover all the possible combinations of task difficulty and type.

To define the tasks, as a first step, we started from the pool of all the problems
available in LeetCode, and filtered them based on the difficulty tags. The difficulty
tag on LeetCode is manually assigned by the person who originally proposed the
problem. We selected two separated pools of problems: easy ones and hard ones,
discarding problems of medium difficulty. We arbitrarily picked two easy tasks and
two hard tasks from such pools. We verified that for all the problems we selected
it was possible to submit a solution in Java since we planned to ask developers to
complete the tasks using Java.

The definition of the feature implementation tasks starting from the Leet-
Code problems was straightforward: We simply provided the participants with the
problem description and we asked them to implement a solution from scratch. To
define the bug fixing tasks, instead, we needed to provide a buggy solution that
they would have fixed. To define the buggy solution, we started from the correct
solution provided by LeetCode itself. Then, we manually injected bugs in such a
solution. The type of modification we made to the code depended on the difficulty
of the task (i.e., we introduced a more articulated bug in the hard task). We report
an example of an injected bug in Figure 1. We report in Table 1 the main features

Do Attention and Memory Explain the Performance of Software Developers? 11

Table 1: Tasks selected for the experiment. o and � indicate task types (bug
fixing and feature implementation), while and � indicate task difficulty (easy
and hard).

Problem Type Difficulty #Test Cases

Find and Replace Pattern (LeetCode, 2020b) o 47
Sort the Matrix Diagonally (LeetCode, 2020d) o � 15
Duplicate Zeros (LeetCode, 2020a) � 30
Regular Expression Matching (LeetCode, 2020c) � � 352

< 25 >= 25

Age

0
5

10
15

20
25

Woman Man

Gender

0
5

10
15

20
25

30

Bs student MS student Ph.D. student Practitioner

Occupation

0
5

10
15

20

1 2 3 4 5 6 15

Java programming experience
(years)

0
2

4
6

8
10

12
14

Fig. 2: Demographic information about the participants.

of the four tasks we defined. Specifically, for each task we report the difficulty level
of tasks, i.e., the value reported when we selected the task. The difficulty of both
the bug fixing tasks was changed to “Medium” in LeetCode after we selected the
tasks and run the experiments. In addition, for each task we report the number of
test cases on LeetCode. Participants did not have access to these test cases. We
internally used them to check the correctness of the solutions they provided.

Participants Selection. To define the number of data points we would have
needed to observe variations in the dependent variables due to the factors we
studied, we ran a power analysis for linear regression.3 To identify a model with
f2 ' 0.15 (i.e., R2 ' 0.13) using 8 predictors (more on the model in Section
4.3) with a 80% power, we needed at least 109 data points. Since each participant
produces four data points, one for each task, we needed at least 28 participants. As
output of the recruiting phase, we involved 32 participants, distributed as follows:
18 bachelor students, 9 master students, 2 Ph.D. students, and 3 practitioners.

3 We used the tool available at https://www.statskingdom.com/sample_size_regression.
html

12 Valentina Piantadosi et al.

Figure 2 reports some demographic information about the participants we se-
lected.

4.2 Data Collection

To collect data through our controlled experiment, the first step consisted in (i)
selecting the psychometric tests we should have used to measure the attention-
and memory-related factors we were interested in, and (ii) implementing them
in a web-app that allowed us to administer such tests. The second step was to
conduct the experiment. We describe below in detail these two steps.

4.2.1 Psychometric Tests

We created a web-app that contains all psychometric tests we were interested in.
Through this web-app, we administered psychometric tests to participants and we
could automatically obtain their results. To measure the attention-related factors,
we used ANT (Fan et al., 2002). In such a test, the participant is presented with
five arrows, each one pointing either to the left or to the right. The goal of the
participant is to indicate the direction of the central arrow as quickly as possible.
Such a procedure is repeated several times and the arrow sets are presented in
different ways. Some of them are preceded by a cue, i.e., a hint about the time
(double cue) and/or the place (spatial cue or central cue) in which the arrows
will appear in the next few instants . Some others, instead, are presented without
any cue (i.e., they are just shown on the screen). When a cue is given, sometimes
it is coherent with the time/location in which the arrows will appear, sometimes,
instead, it is conflicting (e.g., the cue is shown at the top, but the arrows appear at
the bottom). It is possible to watch the video of the test in our replication package
(Piantadosi et al., 2021). The web-app measures the response time (RT), i.e.,
the time the participant takes to select answer. Besides, the web-app annotates,
for each RT , the type of cue and whether it was conflicting or not. In total, we
aimed at collecting 128 RT measures for each participant; the test lasted about
10 minutes. After the first half (64 evaluations), participants could pause for as
long as they wanted before continuing with the second half. We used the 128 RT
measurements to compute the alerting, orienting, and executive control efficiency
metrics through the following formulas (Fan et al., 2002):

alerting = mean(RTno cue)−mean(RTdouble cue)

orienting = mean(RTcentral cue)−mean(RTspatial cue)

executive control = mean(RTcoherent)−mean(RTconflicting)

The values of the metrics provide with the efficiency of the alerting, orienting, and
executive control networks of the participants, respectively. Higher values gener-
ally indicate that a given type of cue is effective and, therefore, the network (i.e.,
alerting) is more efficient. For example, for orienting, a value greater than 0 indi-
cates that the spatial cue allows the participants have better response times, i.e.,
they are able to focus on the cued area. The range of response times is between 0
and 1700 ms.

Do Attention and Memory Explain the Performance of Software Developers? 13

The main test is preceded by a tutorial version of the test that lasts ∼3 minutes,
in which we allow the participants to familiarize with the web-app.

To measure the memory-related factors, we use two tests: the BTACT Word
List Recall test (Tun and Lachman, 2006) for the immediate recall and the Symbol
Digit Modalities Test (Fellows and Schmitter-Edgecombe, 2020) for the working
memory. The BTACT Word List Recall is part of the BTACT battery of cognitive
processing tasks for adults. It allows to measure the immediate recall, or, more
precisely, the immediate episodic memory for verbal material. The participants
were asked to carefully listen to a set of 15 registered words, that we call C.
Then, they were asked to repeat all the words they could remember in 90 seconds.
Participants could use a button to indicate that they could not remember other
words to proceed with the test. To assign a score, one of the authors listened
to each recording offline, and manually annotated the words pronounced by each
participants. Since most of the participants were non-native English speakers, we
were tolerant for imperfect pronunciations, as long as it was clear that they referred
to a word in the list C. This is the main reason why we did not use automated
speech recognition.

For each participant, given the list of words pronounced, P , we compute the
immediate recall as |P∩C|, i.e., the number of words correctly recalled. The Symbol
Digit Modalities Test allows us to measure processing speed and working memory.
In this test, participants were presented with a coding key mapping nine abstract
symbols to numbers from 1 to 9. Participants memorize the mapping for the time
they need. Then, they were presented 144 symbols in a random order with the
mapping still being visible. Finally, the participants had 120 seconds to “decode”,
i.e., to write in numbers, as many symbols as possible in the exact order they were
presented. Participants could not skip symbols. We compute the working memory
score as the total number of correctly decoded symbols.

4.2.2 Controlled Experiment Protocol

Before starting the experiment, we asked each participant to fill in a form through
which they provided basic demographic information, i.e., gender, education level,
occupation, and years of experience, both with the Java programming language
and overall. The experiment was divided, for each participant, in two sessions,
held on different days, behaving risks and benefits. We risked that developers
could refuse the participation in part of the experiment (e.g., second session).
From the positive side, participants could not get too tired because we decrease
the number of tasks for day. The alternative was to have the entire experiment on
a single day. Using this alternative, we risked that developers refused the invitation
to the experiment for the prohibitive experiment duration. Another risk with this
alternative would have been that we would have had a much stronger tiring effect
on participants. Each session had the same structure. During each session, the first
step was to administer the three previously described psychometric tests in the
following order: BTACT Word List Recall (for immediate recall), Symbol Digit
Modalities (for working memory), and, finally, ANT (for alerting, orienting, and
executive control). We measured memory-related factors at the beginning of the
experiment because there could be the risk that participants were tired after being
administered with ANT. These test have to be administered immediately before
software development tasks because attention- and memory-related factors have

14 Valentina Piantadosi et al.

a short-lived validity, as demonstrated in several previous studies (Rapport et al.,
2009; Koen et al., 2013; Conway et al., 2008). We choose to measure psychometric
tests both on day 1 and day 2 because psychometric tests used to assess cognitive
human aspects have a short validity in time (Hughes, 2018). The second step
consisted in asking the participants to complete two of the four programming tasks
outlined previously. In this phase, the author, who supervised the experiment,
shared a Java file containing (i) the description of the task (i.e., the problem
description from LeetCode) and (ii) either a partial solution (for bug fixing tasks)
or the boilerplate for implementing the solution, such as the definition of the class
and the method that LeetCode expected (for feature implementation tasks). Each
participant had 30 minutes to complete each task. After 30 minutes, the author
who supervised the experiment asked the participants to submit remotely the
solution implemented.

To avoid biases due to the task execution order, we divided the participants in
four groups. Depending on the group, a given participant was assigned the tasks
in a different order and in different sessions. We defined the groups so as to assign
one easy and one hard task, as well as a bug fixing and a feature implementation
task for each session. This allowed us to control for fatigue (e.g., the second task
of the day could be performed systematically worse than the first one because
the participant was tired) and learning (e.g., participants could get quicker at
completing coding tasks in the second session because they trained in the first
one). We report the order in which the tasks were assigned to each group in Table
2. Because of the COVID-19 pandemic, it was not possible to completely control
for the environment in which the tasks were performed (e.g., conduct the study in
a laboratory with the same equipment). Hence, we performed the study adopting
a remote setting, trying to recreate the lab setting we originally designed for the
lab study. Specifically, each execution session was remotely supervised by the first
author and, at each time, no more than two participants worked at the same
time. Furthermore, the author who controlled the experiment asked participants
to turn on the microphone and the webcam, and to share the screen, so that it
was possible to verify the presence of any distractions. The author who attend
the experiment both guided the participants through the psychometric tests and
the tasks, and ensured that the tasks were performed as they were intended (e.g.,
ensured that the solution in the determined time frame, control whether there were
external distractions, such as phone calls). The psychometric tests were always
administered to one participant at a time, to avoid the risk of participants affecting
each others behavior (e.g., hearing the words in the Symbol Digit Modalities Test).
The participants were not aware of the fact that the tasks were created using
LeetCode problems. The author who attended the experiment made sure that the
participants did not consult solutions found on the web. Participants shared their
screens during the entire experimental sessions.

We operationalize the participants’ performance in terms of time required to
complete the task and quality of the solution (correctness and readability). We use
time, correctness and readability as dependent variables in the statistical analysis
in Section 4.3. To measure time, the author who supervise the experiment manually
recorded the time at which each participant started each task and the time at which
they reported that they concluded the task. We measure the time in minutes.

To measure the correctness, we relied on the test suite provided by LeetCode,
as shown in Table 1. One of the authors copied and ran each solution given by the

Do Attention and Memory Explain the Performance of Software Developers? 15

participants in LeetCode and measured the number of passed test cases for the
task x, T+

x . For feature implementation tasks, we compute the correctness simply
as:

CorrectnessFI
x =

T+
x

Tx
,

where Tx is the total number of test cases run by LeetCode for x. For bug fixing
tasks, instead, we could not use the same formula: The two bug fixing tasks already
came with a wrong solution. If developers left the provided solutions, without
modifying them they would have achieved higher correctness on the task with the
less buggy solution (the two buggy solutions had a different starting correctness).
To avoid this, we measured, instead, the relative change in correctness: Ideally, a
participant should achieve 100% correctness if they achieve 100% of passed tests,
0% if the correctness does not change compared to the initial solution, and -100%
if no tests pass. To achieve this, we used the following formula:

CorrectnessBF
x =

T+

x −BT+
x

1−BT+
x
, if T+

x ≥ BT+
x

T+
x −BT+

x

BT+
x

, otherwise

where BT+
x is the number of tests passed with the buggy solution provided by

the experimenters.
To measure readability, we used the approach defined by Scalabrino et al.

(2018). While the model returns a binary assessment (i.e., readable or unreadable),
it also provides a number which ranges between 0 and 1, which represents the
estimated probability that the given snippet is readable. We use such a continuous
value in this study. In this case, however, we only consider feature implementation
tasks. Indeed, the readability of the solutions of bug-fixing tasks might strongly
depend on the partial solution we provided and we did not explicitly ask developers
to improve the readability of the provided solution. While we did not ask developers
to write readable code in feature implementation tasks as well, it is worth noting
that writing code from scratch forces developers to make decisions that affect
readability (e.g., deciding identifiers’ names).

Before running the experiment, we obtained the approval of the ethical board
of our research institutions (ID number: ERB2021MCS5). Also, we ran a small
pilot study with three additional participants (not involved in the main study),
in order to test the web-app and the protocol and to spot any possible problem
before starting the study. Participants to the pilot study declared that they had
no problems in performing the study on two different days.

4.3 Data Analysis

To answer both our research questions, we initially compute the correlation be-
tween each continuous independent variable and the two dependent variables, to
understand if there is any direct relationship between couples of dependent/inde-
pendent variables. To do this, we use the Spearman rank correlation ρ (Spearman,
1961). For the Spearman rank correlation, the correlation is weak if the coefficient
is between -0.3 and +0.3, moderate if the coefficient is between -0.3 and -0.7 or

16 Valentina Piantadosi et al.

Table 2: Task assignment for each group. o and � indicate task types (bug fixing
and feature implementation), while and � indicate task difficulty (easy and hard).

Group
Session 1 Session 2

1st Task 2nd Task 1st Task 2nd Task

1 o � � � o�
2 � o� o � �
3 o� � � � o
4 � � o o� �

between +0.3 and +0.7, strong if the coefficient is less than -0.7 or greater than
+0.7 (Sloan, 2015).

Then, to also account for interactions between independent variables, we com-
bine them using explanatory regression models. Specifically, we use generalized
linear regression models with Gaussian link function. The independent variables
we use for such models are alerting, orienting, executive control, working mem-
ory, immediate recall, Java programming experience, task difficulty, and task type.
To answer RQ1, RQ2, and RQ3 we use correctness, time, and readability as the
dependent variables, respectively. Therefore, we define three models, one for each
dependent variable. For each model, we report its explanatory power (R2 and R2

m),
the AIC, and the significance obtained for each independent variable (p-values),
to understand to what extent they explain time, correctness, or readability. If one
of the variables obtains a p-value lower than 0.05, we reject the null hypothesis
that such a variable does not explain the dependent variable. Additionally, we use
backward stepwise elimination to gradually remove independent variables that give
a non-significant benefit to the model and obtain a minimal model for explaining
both our dependent variables. To this aim, we start with a full model containing
all the independent variables, M0. Then, we progressively remove the independent
variable which is less likely to have a relationship with the dependent variable (i.e.,
the one with the highest p-value), we define a new model, M1, and we measure
its AIC. We repeat this steps, until the AIC of the model Mi+1 is lower than the
one of the previous version, Mi; in that case, we keep Mi as the minimal model
(Efroymson, 1960).

Finally, to corroborate our findings, for RQ1 we check if there is any signif-
icant difference in the independent variables between tasks correctly completed
(i.e., 100% correctness) and tasks with at least one failing test case (i.e., correct-
ness lower than 100%). We carry out a similar analysis for RQ2: In this case, we
check the difference between tasks completed before the time was up (i.e., in less
than 30 minutes) and when the time was over (i.e., exactly 30 minutes). For RQ3,
we check if there is any significant difference between readable and unreadable
solutions, based on the binary classification provided by the readability model. In
both the cases, we adopt two hypothesis tests, depending on the variable type: We
use the Mann-Whitney U test (Mann and Whitney, 1947) for continuous variables
such as time and readability, while we use the Fisher exact test (Fisher, 1922) for
categorical variables such as correctness. In RQ1, the null hypotheses are: “There
is no difference in the independent variable x between tasks correctly completed and
tasks with at least a bug”; in RQ2, the null hypotheses are: “There is no difference
in the independent variable x between tasks completed before the time was up and

Do Attention and Memory Explain the Performance of Software Developers? 17

tasks completed when the time was over”; in RQ3, the null hypotheses are: “There
is no difference in the independent variable x between readable solutions and un-
readable solutions”. For each RQ, we adjust the p-values for multiple comparisons
using the Benjamini and Hochberg procedure (Benjamini and Hochberg, 1995).
We also report the effect size, using the Cliff’s delta (Cliff, 1993), to understand
the magnitude of differences observed. Cliff’s delta δ lays in the interval [-1, 1]:
the effect size is negligible for |δ| < 0.148, small for 0.148 ≤ |δ| < 0.33, medium
for 0.33 ≤ |δ| < 0.474, and large for |δ| ≥ 0.474 (Cliff, 1993). If δ > 0, it means
that the first distribution is larger than the second one, while the opposite happens
otherwise (Cliff, 1993). To do this, we use Spearman rank correlation ρ (Spearman,
1961) because this is nonparametric, i.e., they do not assume that data follow a
specific underlying distribution. Same motivation is for Mann-Withney U test and
Fisher exact test: these test are nonparametric.

4.4 Replication Package

All the anonymized data acquired in the experiment are available in our repli-
cation package (Piantadosi et al., 2021), which also includes the four tasks (i.e.,
description and solution of tasks), the script used for statistical analysis and the
source code of the webapp.

5 Results

In this section, we provide empirical evidence to answer our research questions
and discuss our results in Section 5.4. Overall, the participants achieved 26% of
average correctness (21% for bug fixing and 32% for feature implementation tasks).
25% of the participants were able to achieve 100% correctness (30% for bug fix-
ing and 22% for feature implementation). On average, the participants involved in
our study completed the tasks in ∼25.5 minutes (25.4 for bug fixing and 25.6 for
feature implementation tasks). 59% of the participants completed the task in 30
minutes, i.e., they submitted when the time was over (58% for bug fixing and 61%
for feature implementation tasks). Finally, 96.9% of the solutions were readable
in feature implementation tasks. In Figure 4 we show the distribution of readable
and unreadable code. Figure 3 plots the pairwise relationships between each in-
dependent variable and the three dependent ones we investigate, i.e., correctness
(RQ1), time (RQ2), and readability (RQ3). We use scatter plots for continuous
variables and box plots for categorical (binary) ones. Before commenting this fig-
ure, as mentioned in Section 4, it is worth noting that some values of correctness
could be between 0 and -1. Specifically, these values correspond to the correctness
of bug fixing tasks. As described in Section 4, the correctness of bug fixing tasks
could be equal to -100% when no test case passes on the final solution (i.e., not
even the ones that passed on the partial solution provided). For readability, we do
not report the relationship with the task type variable since we only considered
feature implementation tasks, as explained in the design. The first insight we get
from such a figure is that there is no clear relationship between pairs of indepen-
dent and dependent variables. Interestingly, only a small difference in correctness
and time can be noticed for task-related variables (i.e., difficulty and type). It is

18 Valentina Piantadosi et al.

Correctness

results$correctness

A
le

rt
in

g

Time

results$time

Readability

feature_implementation$readability

−
50

0
50

10
0

results$correctness

O
rie

nt
in

g

results$time feature_implementation$readability

−
50

0
50

10
0

results$correctness

E
xe

c.
co

nt
ro

l

results$time feature_implementation$readability −
15

0
−

50
0

results$correctness

W
or

ki
ng

 m
em

or
y

results$time feature_implementation$readability 20
60

10
0

14
0

results$correctness

Im
m

ed
ia

te
 r

ec
al

l

results$time feature_implementation$readability 2
4

6
8

12

results$correctness

P
ro

g.
 e

xp
er

ie
nc

e

results$time feature_implementation$readability 2
4

6
8

12

results$correctness

Ta
sk

 d
iff

ic
ul

ty

results$time

0.0 0.2 0.4 0.6 0.8 1.0

feature_implementation$readability

−1.0 −0.5 0.0 0.5 1.0

results$correctness

Ta
sk

 ty
pe

5 10 15 20 25 30

results$time

�

�

o

Fig. 3: Relationships between the independent variables (y axis) and dependent
variables (x axis). We use scatter plots for continuous variables and box plots for
binary ones. o and � indicate task type (bug fixing and feature implementation),
while and � indicate the task difficulty (easy and hard).

Do Attention and Memory Explain the Performance of Software Developers? 19

Readable code Unreadable code

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Fig. 4: Boxplot of readability values related to feature implementation tasks.

Table 3: Spearman rank correlations ρ between independent variables and depen-
dent ones (significant correlations in bold).

Full dataset FI dataset
Correctness Time Readability

Alerting -0.006 -0.106 0.234
Orienting -0.041 0.160 0.208
Executive control 0.076 -0.020 0.016
Working memory 0.009 -0.032 0.005
Immediate recall 0.086 -0.017 -0.189
Programming experience 0.164 -0.324 -0.073

also possible to notice a slight correlation between readability and two attention-
related factors, i.e., orienting and alerting: Higher attention seem to be associated
to higher readability scores. This visual intuition is later quantitatively confirmed
in the results of RQ3.

5.1 RQ1: Impact of Attention and Memory on Correctness

Table 3 reports the Spearman ρ correlation coefficients between each indepen-
dent variable and correctness. The first clear fact that can be deduced from the
correlations is that both attention-related factors (alerting, orienting, and exec-
utive control) and memory-related ones (immediate recall and working memory)

20 Valentina Piantadosi et al.

Table 4: Explanatory models for correctness, time and readability. For mini-
mal models, we report the step of backward stepwise elimination at which each
marginally relevant independent variable was removed. For each model, we also
report AIC, R2, and R2

m.

Variable
Correctness

Full Model Minimal Model
Coefficient p-value Coefficient p-value

Intercept -3.563e-02 0.882 0.15104 0.028
Alerting 8.347e-05 0.936 Removed at step 2
Orienting 5.931e-04 0.598 Removed at step 4
Executive control 1.332e-04 0.922 Removed at step 3
Immediate recall 1.900e-02 0.389 Removed at step 6
Working memory -1.671e-04 0.939 Removed at step 1
Prog. experience 3.707e-02 0.040 0.03816 0.027
Task type 1.183e-01 0.210 Removed at step 7
Task difficulty -5.998e-02 0.524 Removed at step 5

AIC: 212, R2: 0.06, R2
m: < 0.01 AIC: 201, R2: 0.03, R2

m: 0.03

Variable
Time

Full Model Minimal Model
Coefficient p-value Coefficient p-value

Intercept 29.155228 < 0.001 29.1137 < 0.001
Alerting -0.022749 0.056 Removed at step 7
Orienting 0.010888 0.398 Removed at step 4
Executive control 0.005244 0.735 Removed at step 3
Immediate recall -0.073613 0.770 Removed at step 2
Working memory 0.028154 0.260 Removed at step 5
Prog. experience -1.246597 < 0.001 -1.2407 < 0.001
Task type -1.542033 0.153 Removed at step 1
Task difficulty 0.154936 0.885 Removed at step 6

AIC: 836, R2: 0.28, R2
m: 0.23 AIC: 828, R2: 0.23, R2

m: 0.24

Variable
Readability

Full Model Minimal Model
Coefficient p-value Coefficient p-value

Intercept 0.722830 < 0.001 0.722350 < 0.001
Alerting 0.000439 0.182 Removed at step 6
Orienting 0.000717 0.048 0.000876 0.012
Executive control 0.000226 0.597 Removed at step 2
Immediate recall -0.007807 0.264 Removed at step 5
Working memory 0.000587 0.396 Removed at step 4
Prog. experience -0.002530 0.655 Removed at step 1
Task type // // // //
Task difficulty 0.020942 0.486 Removed at step 3

AIC: -82, R2: 0.18, R2
m: 0.08 AIC: -88, R2: 0.10, R2

m: 0.08

achieve very low correlations with correctness. In particular, the highest correla-
tion is observed for immediate recall (∼0.09). The programming experience achieve
the highest correlation (ρ ' 0.16). No correlation, however, is significant, when the
p-values are adjusted with the Benjamini and Hochberg procedure (Benjamini and
Hochberg, 1995). In absolute terms, all the correlations with single independent
variables are very low.

Do Attention and Memory Explain the Performance of Software Developers? 21

We combine such variables using a generalized linear model, and we report
in Table 4 (upper part), for each independent variable, the coefficient and the
p-value obtained. The model confirms what the individual correlations suggested:
The programming experience is the only important variable (p-value = 0.040). It is
interesting to note that the programming experience in the full model is significant
also putting it in relation with other factors. In addition, it is the only variable
that remains in the minimal model after applying backward stepwise elimination.
In such a model, it achieves, again, statistical significance (p-value = 0.027). The
resulting model, however, has a very low explanatory power (R2

m = 0.03 for the
minimal model). Also in this case, no attention-related and memory-related factor
is significant, and the only factor that remains after backward stepwise elimination
is the programming experience.

Finally, Table 5 reports the results of the comparisons between distributions of
independent variables in the two groups taken into account (correct and incorrect).
While, again, there is no significant difference, we observed a non-negligible (small)
effect size for programming experience.

Summary of RQ1. Attention- and memory-related factors do not corre-
late with the correctness of a task. Conversely, programming experience
shows a statistically significant correlation with correctness, albeit with
small effect size.

5.2 RQ2: Impact of Attention and Memory on Time

As previously done for RQ1, we compute the Spearman ρ correlation coefficients
between the independent variables and time. We report the results in Table 3. We
observe that, while the correlations are low, they are generally higher than the
ones achieved for correctness. In this case, one of the attention-related variables,
i.e., orienting, achieves a relatively higher correlation coefficient (ρ ' 0.16). Such
a correlation, however, is not significant, as all the ones with all the other inde-
pendent variables except for one, i.e., programming experience. Such a correlation
is high compared to the others (ρ ' 0.32), but it is still weak in absolute terms.
With this correlation, we can state that participants having more experience tend
to complete coding tasks faster.

We report the generalized linear model for time in Table 4 (middle part).
Programming experience appears to be, also for time, the most important factor
(p-value < 0.001). It is worth noting that one of the attention-related factors, i.e.,
alerting, is almost significant (p-value = 0.056) in the full model. However, such a
factor is not selected in the minimal model. Programming experience is confirmed
to be, again, the only relevant factor. For time, the minimal model achieves a much
higher explanatory power than the one we built for correctness (R2

m = 0.24).
Finally, we report in Table 5 the results of the comparisons between distribu-

tions of independent variables in the groups time-up (task finished in exactly 30
minutes) and non-time-up (task finished before the time was over). In this case,
we have two variables for which the difference is non-negligible (small) in terms of
effect size, i.e., orienting and programming experience. The last one, in particular,
is significantly higher for the coding tasks completed before the time was over, as
expected.

22 Valentina Piantadosi et al.

Summary of RQ2. Alerting and orienting are attention-related metrics
that show a significant correlation with the time needed to complete a
task.

5.3 RQ3: Impact of Attention and Memory on Code Readability

As discussed in RQ1 and RQ2, in Table 3 we report the Spearman ρ correlation
coefficients between our independent variables and readability. Differently from the
previous research questions, we can observe small correlations between readability
and attention-related factors. Specifically, there is correlation with alerting (ρ =
0.234) and orienting (ρ = 0.208). In addition, there are negative correlations with
immediate recall (ρ = -0.189) and programming experience (ρ = -0.073). When
the p-values are adjusted with the Benjamini and Hochberg procedure (Benjamini
and Hochberg, 1995), however, we observe no significant correlation.

We report the generalized linear model obtained for readability in Table 4 (right
part). In this case, programming experience is not an important factor because the
p-value is not significant (0.655). In the full model, we can see that the only
significant factor is orienting (p-value = 0.048). This factor is important also in
the minimal model (p-value = 0.012).

At the end, we report in Table 5 the results of the comparisons between distri-
butions of independent variables in the groups readable and unreadable solutions.
In terms of effect size, we have several variables for which the difference is non-
negligible: working memory and programming experience (medium), orienting and
working memory (large). The adjusted p-values, however, show no significant dif-
ference. This is most likely due to the lower number of data points considered with
respect to the two other dependent variable, given that we only considered feature
implementation tasks for readability.

Summary of RQ3. Orienting is significantly associated with the code
readability in the generalized linear model, and orienting of developers
who produce readable code is largely higher compared to the ones who
produce unreadable code. However, such a difference is most likely not
significant because of the lower number of data-points considered for this
RQ.

5.4 Discussion

In our study, we aimed at assessing to what extent cognitive aspects are corre-
lated with developers’ performance. In particular, we investigated to what extent
attention and memory correlate with the time required to complete a development
task and the quality of the solution, i.e., both in terms of correctness and read-
ability. The empirical evidence provided by our study suggests a negative result
for memory and attention. Indeed, neither attention nor memory seem to explain
how developers complete coding tasks in terms of correctness. While we obtain a
negative result for correctness, we obtain a positive result for time and readability.
This result concurs with the previous studies (Peitek et al., 2018; Siegmund et al.,

Do Attention and Memory Explain the Performance of Software Developers? 23

Table 5: Comparisons between independent variables in groups (correct vs incor-
rect for RQ1, time-up vs non-time-up for RQ2, and readable vs unreadable for
RQ3) using Mann-Withney (†) and Fisher (‡) tests.

Comparison Variable p-value Cliff’s d

Correct vs. Incorrect

Alerting† 0.973 -0.039 (negl.)
Orienting† 0.973 -0.038 (negl.)
Executive control† 0.973 0.048 (negl.)
Immediate recall† 0.973 0.077 (negl.)
Working memory† 0.973 0.022 (negl.)
Programming experience† 0.154 0.265 (small)

Task difficulty‡ 1.000 0.020 (negl.)
Task type‡ 0.973 -0.102 (negl.)

Time-up vs. Non-time-up

Alerting† 0.746 -0.093 (negl.)
Orienting† 0.381 0.174 (small)
Executive control† 0.932 0.009 (negl.)
Immediate recall† 0.932 0.029 (negl.)
Working memory† 0.920 -0.059 (negl.)
Programming experience† 0.010 -0.323 (small)

Task difficulty‡ 0.746 0.097 (negl.)
Task type‡ 0.932 0.032 (negl.)

Readable vs. Unreadable

Alerting† 1.000 0.089 (negl.)
Orienting† 0.447 0.782 (large)
Executive control† 1.000 -0.056 (negl.)
Immediate recall† 1.000 -0.064 (negl.)
Working memory† 0.912 -0.379 (medi.)
Programming experience† 0.912 -0.355 (medi.)

Task difficulty‡ 1.000 0.016 (negl.)

2017) that showed that the attention is an important factor for program com-
prehension. Given these positive results and the importance of code readability
for program comprehension, we can conclude that developers with high atten-
tion not only understand code better, but also write more readable code. We did
not observe a correlation between readability and memory-related factors. It is
worth noting that explaining the outcome of the activity of code writing, either
for implementing new features or for fixing bugs, is an ambitious task, as the low
explanatory power obtained through our models for correctness show. This means
that, probably, many other factors (including other cognitive ones) should be taken
into account to achieve results usable in practice. In addition, the complexity of
relation between cognitive factors and outcome of coding task and sample char-
acteristics are an important limitation of the measurement of attention is that
these results could not be generalized on all personal characteristics. Despite this
limitation, we include other related cognitive constructs, i.e., working memory, to
guarantee inhibitory control constructs (Colom et al., 2005; Mart́ınez et al., 2011).
As for the measurement of working memory, a possible limitation is that we do
not measure the state of mind of developers (e.g., depression and fatique) (Genova
et al., 2009).

24 Valentina Piantadosi et al.

As for correctness and time, our results show that there is a single variable
that clearly outperforms all the others: the programming experience in the spe-
cific programming language (Java, in our study). Therefore, we can say, from our
results, that, while there are some weak relations between cognitive aspects and
the one variable we considered, i.e., correctness and time, experience alone is a
far better variable to explain both of them. In other words, there appears to be
no “shortcut” for improving in coding tasks from the point of view of cognitive
human aspects. However, the association observed between readability and atten-
tion suggests that it should be possible to devise a training that allow developers
to improve cognitive functions (Oded, 2011) (attention, in our case). Such an im-
provement could be beneficial for writing readable code. However, more research
is needed in this direction to prove that this is a concrete possibility. We tried to
run the same analysis on a subset of our sample composed only of Bachelor stu-
dents to understand if there is any difference with a broader population composed
also of professional developers. We observed that most of the results are in line
with the ones obtained on the whole sample. When we consider readability as the
outcome variable, however, we observe that “Orienting” is only slightly significant
(p=0.056 instead of 0.012 obtained on the whole sample). This is likely due to the
fewer data points considered.

Another interesting phenomenon we observed is the following: In general, in-
dividual differences (in this case, in terms of programming experience) allow to
better explain the outcome than the differences among the tasks (in our study,
type and difficulty).

This means that the skills of a developer are far more important than the
characteristics of the task at hand for determining the success in completing it
and the time required. Also, if we analyze only two type of tasks, this is in line
with what was previously observed for code understandability (Scalabrino et al.,
2019). We can infer that developers with low experience that work on a task
might take more time and might produce worse results regardless of the task at
hand. This allows us to give a clear recommendation to practitioners, which is
already applied in many contexts because of anecdotal evidence: Less experienced
developers should benefit from more experienced developers to achieve higher quality
in the final software product.

6 Threats to Validity

As it is the case for any empirical study validity of our conclusions might have
been threatened in several ways.

6.1 Threat to Construct Validity

The biggest threats to construct validity are related to the methodology used to
measure the independent variables, above all the attention- and memory-related
ones. As described in Section 4, we use state-of-the-art psychometric tests to
achieve this goal and we replicated them in our web-app. It might be possible that
implementation errors have caused wrong measurements. Recent work Brearly
et al. (2018) has highlighted that different platforms can also produce different

Do Attention and Memory Explain the Performance of Software Developers? 25

tests results. Thus, the problems related to the use of a self-implemented web-app
are more complex than the correctness of the implementation. However, as we
report later, the cognitive variables we measured on our sample are in line with
the ones from other populations. This increases our confidence in the correct im-
plementation of the platform we developed. We thoroughly tested the web-app to
avoid this. In addition, there is the possibility that we use existing psychometric
tests in a wrong way. Attention and memory could be measured with dedicated
and specialized psychometric tests who are far from our knowledge. The accuracy
with which we could reliably measure reaction times in ANT (for attention-related
metrics) was within tenths of a second; state-of-the-art measurement provide the
measure of reaction times with the precision of thousandths of a second. We be-
lieve that this is a negligible limitation: the mean reaction time we obtained is
∼ 681ms, meaning that the maximum error due to the lack of precision (±50ms)
would be at most ∼ 7.3%. Such a level of precision would be mostly irrelevant. The
original version of ANT (Fan et al., 2002) we used for measuring attention-related
factors provided three blocks with 96 evaluations each (288 total evaluations). We
used reduced version of such a test (Weaver et al., 2013), which provide two blocks
of 64 evaluations each (128 total evaluations). This allowed us to reduce the effort
for developers. It could be possible that psychometric tests might cause fatigue in
the developer and, therefore, reduce their ability of correctly completing the tasks
or increasing the time required to do so. To reduce this effect, we let developer
rest for a few minutes after the tests, before starting the tasks. We could not avoid
this, since measurements of attention-related factor may depend on the context in
which they are taken (Matchock and Mordkoff, 2009).

Another possible problem could be related to the operationalization and mea-
surement of attention and memory. Both such aspects are acquired through psy-
chometric tests, which could not be administered while the developer was writing
code to avoid disctraction (thus an impact on the outcome). This limitation, how-
ever, could impact the reliability of measurements since developers’ attention and
memory could drop during the task. To reduce the impact of such a limitation, we
measured these aspects before each session, as previous studies do (Oliveira et al.,
2018; Brun et al., 2021).

Another possible threat is related to the representativeness of the sample be-
cause of the convenience sampling we used. We compared the distribution of the
cognitive qualities from our sample with the cognitive distribution from a pre-
vious study (Lachman et al., 2014). We found that our results are in line with
cognitive distribution from such a study. As for the immediate recall, we com-
pare the distribution obtained on our sample (mean and standard deviation) with
the one obtained by Lachman et al. (2014). In our study, the mean immediate
recall is 6.26 (sd=2.37), while in the population studied by Lachman et al. it
was 6.74 (sd=2.28), despite the number of participants is much larger, i.e., 7,100
vs our 32 (two measurements for each participant, thus 64). As for the work-
ing memory, we compared our distribution with the one obtained by Fellows and
Schmitter-Edgecombe (2020). In our population, the mean working memory is 82.5
(sd=23.8), in the study by Fellows et al., who involved 536 participants, it was
61.53 (sd=14.08). Despite the difference, in terms of mean, it can be observed that
both the measures are comparable given the quite large standard deviation, par-
ticularly for our sample, which is smaller. As for the attention level, we compare
the results with the ones obtained by Weaver et al. (2013). In this case, the mean

26 Valentina Piantadosi et al.

is 660.4 (sd=121.4) for the “Java-ANT” group, 662.5 (sd=96.2) for the “CRSD-
ANT” group, while in our study it is 662.06 (sd=202.58). Also in this case, the
results are in line with the ones obtained in the literature.

6.2 Threat to Internal Validity

A threats to internal validity is related to the measurement of programming expe-
rience. We asked developers to indicate the number of years of experience in Java.
Siegmund et al. (2014) showed that, while this is the most commonly used ap-
proach, other self-estimation questions might be more relevant for students (e.g.,
self-assessment of experience compared to other class mates). Therefore, alterna-
tive and more reliable measures of programming experience might allow to achieve
even higher correlations with both correctness and time.

Another threat is related to the definition of the tasks. It could be argued
that the bug-injection methodology we used is not completely realistic since we
arbitrarily modified the code. However, a similar methodology has been adopted
in previous studies as well (Hutchins et al., 1994; Wong et al., 1998, 2013). Also, it
could be argued that the description of the problems taken from LeetCode was not
necessarily understandable to all developers. We assume that, being exposed every
day to the many users of LeetCode, any understandability problem was removed
from the description in time.

Another threat is related to the task choice. We chose tasks considering differ-
ent difficulty levels: However, the perceived difficulty is subjective by nature. For
example, the task Find and Replace Pattern could be easy for a developer that
has experience with regular expressions, but it could be difficult for others.

For psychometric tests there could be other cognitive human factors to be
considered. For example, we could consider the measurements of natural language
competencies to explain code readability.

There could be other factors, different from attention and associated with
natural language competencies, which better explain code readability. For instance,
proficiency in English writing, knowledge of the English vocabulary. Hence, the
recommendation to devise exercises to improve attention in order to have a positive
effect on code readability might be overridden by the need to improve English
language knowledge.

The problem of lack of control on the programming experience could be also
related to the self-selected convenience sampling and one possible interference of
demographics. This is related to the fact that our sample is very homogeneous and
their demographics have limited variance. As described in Section 4, we recruited
32 participants without considering their programming experience. As written
above, we invited participants from four different countries. As a consequence,
their background is heterogeneous. Unfortunately, given the lack of control, there
is a developer with 15 years of Java experience that increase the average experience.
However, if we removed the outlier, we do not obtain dissimilar results.

Another threat is induced by the time-out we used for the tasks (30 minutes).
Such a time could not have been necessary to complete the entire software de-
velopment task for some developers. We kept a time limit of 30 minutes because
participants to the pilot study confirmed that the time was sufficient to complete
the tasks at hand. For this reason, and also to decrease fatigue effects, we decided

Do Attention and Memory Explain the Performance of Software Developers? 27

to adopt this time. We verified if there are possible effects of fatigue and learning.
To do this, we analyzed results of Day 1 and results of Day 2. For correctness
and time, we observed a slight difference in the two sessions: On Day 1, 69% of
solutions contain bugs and 59% of solutions have been completed in the given
time. On Day 2, 79% of solutions contain bugs and 67% of solutions have been
completed in the given time. As for readability, we observed no relevant difference:
45% of the solutions were readable for Day 1 and 46% of solution were readable
for Day 2. Despite such a difference, given our balanced design, we believe that
these effect did not bias the final results.

Another limitation is related to the choice of the programming language. There
is the possibility that we chose a unfamiliar language for some developers. We used
Java since all the participants attended a University course on such a programming
language.

6.3 Threat to External Validity

Our findings may be mostly related to the specific sample of developers we involved
in the study. We included a total of 32 developers from four different countries. In
this way, we believe we limited the biases related to common education and social
background. Our a-priori power analysis suggested that a sample of 26 developers
would have been sufficient to achieve 80% power. To further verify that our sample
is not too small, we also run post-hoc power analysis for our two regression models.
We achieve 83.1% power for the correctness model (RQ1), 99.9% for the time model
(RQ2) and 95.0% for the readability model (RQ3). Therefore, we can confidently
conclude that the data on which we based our analyses are sufficient to draw the
conclusions we made.

The only hints at the fact a bigger sample could have resulted in additional
significant differences are given by (i) the non-negligible effect size we obtained
when comparing the orienting values between the time-up and the non-time-up
groups, and (ii) the almost significant p-value of alerting obtained in the full
regression model that predicts time (p-value = 0.056). In the former, the p-value
of the comparison (0.38) is quite far from the threshold we chose for significance
(0.05), and the effect size, while being small (0.174), is very close to the negligible
threshold (0.148). As for the latter, instead, it can be noticed, given the coefficient
assigned to the alerting, such a value has an influence on the time fitted by the
model between -3.6 and +1.2 minutes. For comparison, the effect of programming
experience is between -18.8 and -1.3 minutes. In other words, it would require
developers to have a relatively high alerting efficiency for having a small benefit in
terms of time, according to the model, regardless of the significance of the variable.

Another important point is how much the selected tasks are valid represen-
tations for real coding problems. Selected tasks do not represent all the possible
coding tasks, but only a part of low-level coding tasks (e.g., implementation of
method). For example, we ask the participants to implement a regular expression
matching algorithm, but we do not ask them to write a regular expression to filter
out people whose name does not meet some criteria. However, the tasks we se-
lected represent realistic coding problems that thevelopers might find themselves
solving. For example, in the “Duplicate zeros” task, we ask them to “duplicate
each occurrence of zero, shifting the remaining elements to the right.” There are

28 Valentina Piantadosi et al.

plenty of contexts in which developers might need to insert elements in an array
and shifting the remaining ones to the right4.

7 Conclusion

Among cognitive aspects, attention and memory have been shown to be related
to the outcome of different kinds of tasks (e.g., driving or solving mathematical
problems), and they have also been used in the context of Software Engineering
and Software Security (e.g., for determining the usability of security APIs, Oliveira
et al. (2018)), but they are also used to observe neural activation related to atten-
tion and working memory during coding activities (Peitek et al., 2018; Siegmund
et al., 2014; Krueger et al., 2020).

For this reason, we theorize that attention- and memory-related factors also
play a role in coding tasks, which are at the base of software development and
evolution. We conducted a controlled experiment with 32 developers, and asked
them to complete 4 tasks each. We measured three attention-related metrics and
two memory-related ones, widely used in the literature. We aim at predicting the
time needed to complete the tasks and the quality of the solutions, both in terms of
correctness and readability. We check the relationship between independent vari-
ables (including also programming experience, task difficulty, and task type) and
the three dependent ones both by using single correlations and by combining them
in a regression model. On the one hand, we obtained a negative result : Neither
attention- nor memory-related factors play a role in explaining correctness. Pro-
gramming experience is the only significant factor, much more important than the
task difficulty and the task type. On the other hand, we observed that attention-
related factors (alerting and orienting) are associated with higher capability of
writing readable solutions and of completing solutions in time.

Our results clearly show that attention and memory play a marginal role in
explaining correctness, if any. Replications of our study are needed to further cor-
roborate our findings. Specifically, broader studies are needed to show possible
small interaction that we could not get at this scale. Also, future research could
focus on other cognitive aspects we did not consider in this study, such as intelli-
gence (e.g., through IQ).

Conflict of interest

The authors declare that they have no conflict of interest.

References

Allan J (2013) Cognitions, Springer New York, New York, NY, pp 441–
441. DOI 10.1007/978-1-4419-1005-9 1114, URL https://doi.org/10.1007/

978-1-4419-1005-9_1114

4 See, for example: https://github.com/FantacyWorld/libMSVL/blob/master/dyn_array.
c\#L307.

Do Attention and Memory Explain the Performance of Software Developers? 29

Baddeley AD (1983) Working memory. Philosophical Transactions of the Royal
Society of London B, Biological Sciences 302(1110):311–324

Benedict RH, DeLuca J, Phillips G, LaRocca N, Hudson LD, Rudick R, Consor-
tium MSOA (2017) Validity of the symbol digit modalities test as a cognition
performance outcome measure for multiple sclerosis. Multiple Sclerosis Journal
23(5):721–733

Benjafield JG, Smilek D, Kingstone A (2010) Cognition (4th ed.). New York:
Oxford University Press

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practi-
cal and powerful approach to multiple testing. Journal of the Royal statistical
society: series B (Methodological) 57(1):289–300

Bhattacharya P, Neamtiu I (2011) Bug-fix time prediction models: can we do
better? In: Proceedings of the 8th Working Conference on Mining Software
Repositories, pp 207–210

Bialystok E, DePape AM (2009) Musical expertise, bilingualism, and executive
functioning. Journal of Experimental Psychology: Human Perception and Per-
formance 35(2):565

Blackburn JD, Scudder GD, Van Wassenhove LN (1996) Improving speed and
productivity of software development: a global survey of software developers.
IEEE transactions on software engineering 22(12):875–885

Blank A, Frush Holt R, Pisoni DB, Kronenberger WG (2020) Associations be-
tween parenting stress, language comprehension, and inhibitory control in chil-
dren with hearing loss. Journal of Speech, Language, and Hearing Research
63(1):321–333

Bowrin AR, King J (2010) Time pressure, task complexity, and audit effectiveness.
Managerial auditing journal

Brearly TW, Rowland JA, Martindale SL, Shura RD, Curry D, Taber KH (2018)
Comparability of ipad and web-based nih toolbox cognitive battery administra-
tion in veterans. Archives of Clinical Neuropsychology 34(4):524–530

Brun Y, Lin T, Somerville JE, Myers E, Ebner NC (2021) Blindspots in python
and java apis result in vulnerable code. arXiv preprint arXiv:210306091

Cairncross M, Gindwani H, Rita Egbert A, Torres IJ, Hutchison JS,
Dams O’Connor K, Panenka WJ, Brubacher JR, Meddings L, Kwan L, et al.
(2022) Criterion validity of the brief test of adult cognition by telephone (btact)
for mild traumatic brain injury. Brain Injury pp 1–9

Cappos J, Zhuang Y, Oliveira D, Rosenthal M, Yeh KC (2014) Vulnerabilities as
blind spots in developer’s heuristic-based decision-making processes. In: Pro-
ceedings of the 2014 New Security Paradigms Workshop, pp 53–62

Cliff N (1993) Dominance statistics: Ordinal analyses to answer ordinal questions.
Psychological bulletin 114(3):494

Colom R, Flores-Mendoza C, Quiroga MÁ, Privado J (2005) Working memory and
general intelligence: The role of short-term storage. Personality and Individual
Differences 39(5):1005–1014

Conway A, Jarrold C, Miyake A (2008) Variation in working memory. Oxford
University Press

Coulter NS (1983) Software science and cognitive psychology. IEEE Transactions
on Software Engineering (2):166–171

Crawford JR (1998) Introduction to the assessment of attention and executive
functioning. Neuropsychological rehabilitation 8(3):209–211

30 Valentina Piantadosi et al.

Di Nucci D, Palomba F, De Rosa G, Bavota G, Oliveto R, De Lucia A (2017)
A developer centered bug prediction model. IEEE Transactions on Software
Engineering 44(1):5–24

Ebisch SJ, Mantini D, Romanelli R, Tommasi M, Perrucci MG, Romani GL, Colom
R, Saggino A (2013) Long-range functional interactions of anterior insula and
medial frontal cortex are differently modulated by visuospatial and inductive
reasoning tasks. Neuroimage 78:426–438

Efroymson MA (1960) Multiple regression analysis. Mathematical methods for
digital computers pp 191–203

Eriksen BA, Eriksen CW (1974) Effects of noise letters upon the identification of
a target letter in a nonsearch task. Perception & psychophysics 16(1):143–149

Fan J, McCandliss BD, Sommer T, Raz A, Posner MI (2002) Testing the efficiency
and independence of attentional networks. Journal of cognitive neuroscience
14(3):340–347

Fellows RP, Schmitter-Edgecombe M (2020) Symbol digit modalities test:
Regression-based normative data and clinical utility. Archives of Clinical Neu-
ropsychology 35(1):105–115

Fisher RA (1922) On the interpretation of χ 2 from contingency tables, and the
calculation of p. Journal of the Royal Statistical Society 85(1):87–94

Floyd B, Santander T, Weimer W (2017) Decoding the representation of code in
the brain: An fmri study of code review and expertise. In: 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE), IEEE, pp 175–186

Forn C, Belloch V, Bustamante JC, Garbin G, Parcet-Ibars MÀ, Sanjuan A, Ven-
tura N, Ávila C (2009) A symbol digit modalities test version suitable for func-
tional mri studies. Neuroscience letters 456(1):11–14

Forn C, Rocca MA, Boscá I, Casanova B, Sanjuan A, Filippi M (2013) Analysis of
“task-positive” and “task-negative” functional networks during the performance
of the symbol digit modalities test in patients at presentation with clinically
isolated syndrome suggestive of multiple sclerosis. Experimental brain research
225(3):399–407

Friedman NP, Miyake A (2004) The relations among inhibition and interference
control functions: a latent-variable analysis. Journal of experimental psychology:
General 133(1):101

Gellman MD, Turner JR (eds) (2013) Cognition, Springer New York, New York,
NY, pp 441–441. DOI 10.1007/978-1-4419-1005-9 100314, URL https://doi.

org/10.1007/978-1-4419-1005-9_100314

Genova HM, Hillary FG, Wylie G, Rypma B, Deluca J (2009) Examination of pro-
cessing speed deficits in multiple sclerosis using functional magnetic resonance
imaging. Journal of the International Neuropsychological Society 15(3):383–393

Gershon RC, Wagster MV, Hendrie HC, Fox NA, Cook KF, Nowinski CJ (2013)
Nih toolbox for assessment of neurological and behavioral function. Neurology
80(11 Supplement 3):S2–S6

Green CS, Bavelier D (2007) Action-video-game experience alters the spatial res-
olution of vision. Psychological science 18(1):88–94

Habib M, Besson M (2009) What do music training and musical experience teach
us about brain plasticity? Music Perception 26(3):279–285

Halberda J, Mazzocco MM, Feigenson L (2008) Individual differences in non-verbal
number acuity correlate with maths achievement. Nature 455(7213):665–668

Do Attention and Memory Explain the Performance of Software Developers? 31

He Z, Shu F, Yang Y, Li M, Wang Q (2012) An investigation on the feasibility of
cross-project defect prediction. Automated Software Engineering 19(2):167–199

Howard SJ, Johnson J, Pascual-Leone J (2014) Clarifying inhibitory control: Diver-
sity and development of attentional inhibition. Cognitive Development 31:1–21

Huang Y, Liu X, Krueger R, Santander T, Hu X, Leach K, Weimer W (2019)
Distilling neural representations of data structure manipulation using fmri and
fnirs. In: 2019 IEEE/ACM 41st International Conference on Software Engineer-
ing (ICSE), IEEE, pp 396–407

Hughes DJ (2018) Psychometric validity: Establishing the accuracy and appropri-
ateness of psychometric measures. The Wiley handbook of psychometric testing:
A multidisciplinary reference on survey, scale and test development pp 751–779

Hutchins M, Foster H, Goradia T, Ostrand T (1994) Experiments on the effective-
ness of dataflow-and control-flow-based test adequacy criteria. In: Proceedings
of 16th International conference on Software engineering, IEEE, pp 191–200

Juristo N, Moreno AM (2013) Basics of software engineering experimentation.
Springer Science & Business Media

Karas Z, Jahn A, Weimer W, Huang Y (2021) Connecting the dots: rethinking
the relationship between code and prose writing with functional connectivity. In:
Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pp
767–779

Koen JD, Aly M, Wang WC, Yonelinas AP (2013) Examining the causes of mem-
ory strength variability: Recollection, attention failure, or encoding variabil-
ity? Journal of Experimental Psychology: Learning, Memory, and Cognition
39(6):1726

Krueger R, Huang Y, Liu X, Santander T, Weimer W, Leach K (2020) Neurological
divide: an fmri study of prose and code writing. In: 2020 IEEE/ACM 42nd
International Conference on Software Engineering (ICSE), IEEE, pp 678–690

Kuutila M, Mäntylä MV, Claes M, Elovainio M (2017) Reviewing literature on time
pressure in software engineering and related professions: computer assisted inter-
disciplinary literature review. In: 2017 IEEE/ACM 2nd International Workshop
on Emotion Awareness in Software Engineering (SEmotion), IEEE, pp 54–59

Lachman ME, Agrigoroaei S, Tun PA, Weaver SL (2014) Monitoring cognitive
functioning: psychometric properties of the brief test of adult cognition by tele-
phone. Assessment 21(4):404–417

LeetCode (2020a) Leetcode problem: Duplicate zeros. URL https://leetcode.

com/problems/duplicate-zeros/

LeetCode (2020b) Leetcode problem: Find and replace pattern. URL https://

leetcode.com/problems/find-and-replace-pattern/

LeetCode (2020c) Leetcode problem: Regular expression matching. URL https:

//leetcode.com/problems/regular-expression-matching/

LeetCode (2020d) Leetcode problem: Sort the matrix diagonally. URL https:

//leetcode.com/problems/sort-the-matrix-diagonally/

Lesage E, Sutherland MT, Ross TJ, Salmeron BJ, Stein EA (2020) Nicotine de-
pendence (trait) and acute nicotinic stimulation (state) modulate attention but
not inhibitory control: converging fmri evidence from go–nogo and flanker tasks.
Neuropsychopharmacology 45(5):857–865

Li Z, Jing XY, Zhu X (2018) Progress on approaches to software defect prediction.
Iet Software 12(3):161–175

32 Valentina Piantadosi et al.

Lilienthal L, Tamez E, Shelton JT, Myerson J, Hale S (2013) Dual n-back training
increases the capacity of the focus of attention. Psychonomic bulletin & review
20(1):135–141

Mann HB, Whitney DR (1947) On a test of whether one of two random variables
is stochastically larger than the other. The annals of mathematical statistics pp
50–60

Mart́ınez K, Burgaleta M, Román FJ, Escorial S, Shih PC, Quiroga MÁ, Colom
R (2011) Can fluid intelligence be reduced to ‘simple’short-term storage? Intel-
ligence 39(6):473–480

Matchock RL, Mordkoff JT (2009) Chronotype and time-of-day influences on the
alerting, orienting, and executive components of attention. Experimental brain
research 192(2):189–198

Mundy E, Gilmore CK (2009) Children’s mapping between symbolic and non-
symbolic representations of number. Journal of experimental child psychology
103(4):490–502

Musso M, Kyndt E, Cascallar E, Dochy F (2012) Predicting mathematical perfor-
mance: The effect of cognitive processes and self-regulation factors. Education
Research International 2012

Nour S, Struys E, Stengers H (2019) Attention network in interpreters: The role
of training and experience. Behavioral Sciences 9(4):43

Oded Y (2011) Biofeedback-based mental training in the military—the “mental
gym™” project. Biofeedback 39(3):112–118

Oliveira D, Rosenthal M, Morin N, Yeh KC, Cappos J, Zhuang Y (2014) It’s the
psychology stupid: how heuristics explain software vulnerabilities and how prim-
ing can illuminate developer’s blind spots. In: Proceedings of the 30th Annual
Computer Security Applications Conference, pp 296–305

Oliveira DS, Lin T, Rahman MS, Akefirad R, Ellis D, Perez E, Bobhate R, DeLong
LA, Cappos J, Brun Y (2018) API blindspots: Why experienced developers write
vulnerable code. In: Fourteenth Symposium on Usable Privacy and Security
({SOUPS} 2018), pp 315–328

Parmenter B, Weinstock-Guttman B, Garg N, Munschauer F, Benedict RH (2007)
Screening for cognitive impairment in multiple sclerosis using the symbol digit
modalities test. Multiple Sclerosis Journal 13(1):52–57

Passolunghi MC, Vercelloni B, Schadee H (2007) The precursors of mathemat-
ics learning: Working memory, phonological ability and numerical competence.
Cognitive development 22(2):165–184

Peitek N, Siegmund J, Apel S, Kästner C, Parnin C, Bethmann A, Leich T, Saake
G, Brechmann A (2018) A look into programmers’ heads. IEEE Transactions
on Software Engineering 46(4):442–462

Piantadosi V, Scalabrino S, Serebrenik A, Novielli N, Oliveto R (2021) Replica-
tion package of ”do attention and memory explain the performance of software
developers?”. URL https://figshare.com/s/f3cf009d98ac60530ec6

Pinto G, Rebouças M, Castor F (2017) Inadequate testing, time pressure, and
(over) confidence: a tale of continuous integration users. In: 2017 IEEE/ACM
10th International Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE), IEEE, pp 74–77

Posner MI (1980) Orienting of attention. Quarterly journal of experimental psy-
chology 32(1):3–25

Do Attention and Memory Explain the Performance of Software Developers? 33

Posner MI, Petersen SE (1990) The attention system of the human brain. Annual
review of neuroscience 13(1):25–42

Posnett D, D’Souza R, Devanbu P, Filkov V (2013) Dual ecological measures
of focus in software development. In: 2013 35th International Conference on
Software Engineering (ICSE), IEEE, pp 452–461

Rahman F, Posnett D, Devanbu P (2012) Recalling the” imprecision” of cross-
project defect prediction. In: Proceedings of the ACM SIGSOFT 20th Interna-
tional Symposium on the Foundations of Software Engineering, pp 1–11

Rapport MD, Kofler MJ, Alderson RM, Timko Jr TM, DuPaul GJ (2009) Vari-
ability of attention processes in adhd: Observations from the classroom. Journal
of Attention Disorders 12(6):563–573

Rasch RH, Tosi HL (1992) Factors affecting software developers’ performance: An
integrated approach. MIS quarterly pp 395–413

Ricca F, Di Penta M, Torchiano M, Tonella P, Ceccato M (2007) The role of
experience and ability in comprehension tasks supported by uml stereotypes.
In: 29th International Conference on Software Engineering (ICSE’07), IEEE,
pp 375–384

Ricca F, Di Penta M, Torchiano M, Tonella P, Ceccato M (2009) How developers’
experience and ability influence web application comprehension tasks supported
by uml stereotypes: A series of four experiments. IEEE Transactions on Software
Engineering 36(1):96–118

Roy E (2013) Cognitive Function, Springer New York, New York, NY, pp 448–
449. DOI 10.1007/978-1-4419-1005-9 1117, URL https://doi.org/10.1007/

978-1-4419-1005-9_1117

Scalabrino S, Linares-Vásquez M, Oliveto R, Poshyvanyk D (2018) A compre-
hensive model for code readability. Journal of Software: Evolution and Process
30(6):e1958

Scalabrino S, Bavota G, Vendome C, Poshyvanyk D, Oliveto R, et al. (2019)
Automatically assessing code understandability. IEEE Transactions on Software
Engineering

Schacter DL, Wagner AD, Buckner RL (2000) Memory systems of 1999.
Schellenberg EG (2004) Music lessons enhance iq. Psychological science 15(8):511–

514
Sharafi Z, Huang Y, Leach K, Weimer W (2021) Toward an objective measure

of developers’ cognitive activities. ACM Transactions on Software Engineering
and Methodology (TOSEM) 30(3):1–40

Shneiderman B, Mayer R (1979) Syntactic/semantic interactions in programmer
behavior: A model and experimental results. International Journal of Computer
& Information Sciences 8(3):219–238

Shorey C, Friedman E (2018) Multimorbidity and cognitive decline in a national
sample of aging adults. Innovation in Aging 2(Suppl 1):505

Siegmund J, Kästner C, Liebig J, Apel S, Hanenberg S (2014) Measuring and
modeling programming experience. Empirical Software Engineering 19(5):1299–
1334

Siegmund J, Peitek N, Parnin C, Apel S, Hofmeister J, Kästner C, Begel A, Beth-
mann A, Brechmann A (2017) Measuring neural efficiency of program com-
prehension. In: Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, pp 140–150

34 Valentina Piantadosi et al.

Silva P, Spedo C, Barreira AA, Leoni RF (2018) Symbol digit modalities test
adaptation for magnetic resonance imaging environment: A systematic review
and meta-analysis. Multiple sclerosis and related disorders 20:136–143

Sloan L (2015) Learn about Spearman’s Rank-order Correlation Coefficient in
SPSS with Data from the General Social Survey (2012). SAGE Publications

Song MK, Ward SE, Bair E, Weiner LJ, Bridgman JC, Hladik GA, Gilet CA
(2015) Patient-reported cognitive functioning and daily functioning in chronic
dialysis patients. Hemodialysis International 19(1):90–99

Spearman C (1961) The proof and measurement of association between two things.
American Journal of Psychology

Thota MK, Shajin FH, Rajesh P, et al. (2020) Survey on software defect prediction
techniques. International Journal of Applied Science and Engineering 17(4):331–
344

Tiego J, Testa R, Bellgrove MA, Pantelis C, Whittle S (2018) A hierarchical model
of inhibitory control. Frontiers in psychology 9:1339

Tun PA, Lachman ME (2006) Telephone assessment of cognitive function in adult-
hood: the brief test of adult cognition by telephone. Age and Ageing 35(6):629–
632

Wang H, Fan J, Yang Y (2004) Toward a multilevel analysis of human atten-
tional networks. In: Proceedings of the Annual Meeting of the Cognitive Science
Society, vol 26

Weaver B, Bedard M, McAuliffe J, Parkkari M (2009) Using the attention network
test to predict driving test scores. Accident Analysis & Prevention 41(1):76–83

Weaver B, Bédard M, McAuliffe J (2013) Evaluation of a 10-minute version of the
attention network test. The Clinical Neuropsychologist 27(8):1281–1299

Wei W, Yuan H, Chen C, Zhou X (2012) Cognitive correlates of performance in
advanced mathematics. British Journal of Educational Psychology 82(1):157–
181

Wong WE, Horgan JR, London S, Mathur AP (1998) Effect of test set min-
imization on fault detection effectiveness. Software: Practice and Experience
28(4):347–369

Wong WE, Debroy V, Gao R, Li Y (2013) The dstar method for effective software
fault localization. IEEE Transactions on Reliability 63(1):290–308

Woumans E, Ceuleers E, Van der Linden L, Szmalec A, Duyck W (2015) Ver-
bal and nonverbal cognitive control in bilinguals and interpreters. Journal of
Experimental Psychology: Learning, Memory, and Cognition 41(5):1579

Zelazo PD, Anderson JE, Richler J, Wallner-Allen K, Beaumont JL, Weintraub
S (2013) Ii. nih toolbox cognition battery (cb): Measuring executive function
and attention. Monographs of the Society for Research in Child Development
78(4):16–33

Zhang H, Gong L, Versteeg S (2013) Predicting bug-fixing time: an empirical
study of commercial software projects. In: 2013 35th International Conference
on Software Engineering (ICSE), IEEE, pp 1042–1051

Zimmermann T, Nagappan N, Gall H, Giger E, Murphy B (2009) Cross-project
defect prediction: a large scale experiment on data vs. domain vs. process. In:
Proceedings of the 7th joint meeting of the European software engineering con-
ference and the ACM SIGSOFT symposium on The foundations of software
engineering, pp 91–100

