
Pynblint: a Static Analyzer for Python Jupyter Notebooks

Luigi Quaranta
University of Bari

Bari, Italy

luigi.quaranta@uniba.it

Fabio Calefato
University of Bari

Bari, Italy

fabio.calefato@uniba.it

Filippo Lanubile
University of Bari

Bari, Italy

filippo.lanubile@uniba.it

ABSTRACT

Jupyter Notebook is the tool of choice of many data scientists in

the early stages of ML workflows. The notebook format, however,

has been criticized for inducing bad programming practices; indeed,

researchers have already shown that open-source repositories are

inundated by poor-quality notebooks. Low-quality output from

the prototypical stages of ML workflows constitutes a clear bot-

tleneck towards the productization of ML models. To foster the

creation of better notebooks, we developed Pynblint, a static an-

alyzer for Jupyter notebooks written in Python. The tool checks

the compliance of notebooks (and surrounding repositories) with

a set of empirically validated best practices and provides targeted

recommendations when violations are detected.

CCS CONCEPTS

• Software and its engineering→ Softwaremaintenance tools;

Software configuration management and version control systems;

• Human-centered computing→ Collaborative and social com-

puting systems and tools.

KEYWORDS

Computational notebooks, lint, software quality, data science, ma-

chine learning

ACM Reference Format:

Luigi Quaranta, Fabio Calefato, and Filippo Lanubile. 2022. Pynblint: a Static

Analyzer for Python Jupyter Notebooks. In 1st Conference on AI Engineering

- Software Engineering for AI (CAIN’22), May 16–24, 2022, Pittsburgh, PA, USA.

ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3522664.3528612

1 INTRODUCTION

The massive adoption of AI-based technologies in the modern soft-

ware industry is raising new intriguing challenges, many of which

concern the shift of machine learning (ML) model prototypes into

production-ready software components. Often, a variety of factors

contribute to rendering this shift difficult and costly to achieve;

these range from technical matters – like the complexity of re-

producing lab model performances in live systems – to human

aspects, arising from the coexistence of varied backgrounds and

perspectives in multidisciplinary teams [4].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CAIN’22, May 16–24, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9275-4/22/05. . . $15.00
https://doi.org/10.1145/3522664.3528612

In this context, a prominent role is played by the tools that

practitioners adopt at the various stages of ML workflows. Tool

misuse can hinder the quality of team collaboration and constitute

a bottleneck towards the productization of ML models. Notably,

computational notebooks represent a prime example. In the last

few years, they have established themselves as the tool of choice of

many data scientists for activities comprised in the early stages of

ML workflows, from data exploration to model prototyping. Their

most popular implementation, Jupyter Notebook,1 combines code,

documentation, and multimedia output in an interactive narrative

of computations, providing unparalleled support for fast experi-

mental iterations and lightweight documentation of experiments.

However, besides the evident benefits they bring, Jupyter note-

books have been criticized for inducing bad programming habits

and offering limited built-in support for software engineering best

practices [1, 2]. Indeed, researchers have already shown that note-

books often contain poor quality code and that – in spite of their

original vocation – they typically end up being messy and scarcely

documented [5, 7].

Commonly, poor-quality and hardly-reproducible notebooks,

written by data scientists in the early stages of ML workflows, get in

the way of the model productization process. Indeed, transitioning

from ML model prototypes to production-ready ML components of-

ten entails, in practice, the consolidation of experimental code from

notebooks into structured and tested codebases [3]. Under such

circumstances, low-grade notebooks might represent an expensive

bottleneck and a potential source of technical debt.

2 PYNBLINT

In our previous work [6], we collected and validated a catalog of

17 best practices for professional collaboration with computational

notebooks. Our guidelines foster a use of notebooks aware of soft-

ware engineering best practices, with the aim of boosting their

benefits while preventing potential drawbacks. In the light of these

findings, we have developed Pynblint,2 a static analysis tool for

Jupyter notebooks written in Python.

Besides being themost popular notebook platform to date, Jupyter

Notebook has inspired the design of most modern computational

notebook implementations; the majority of them currently adopts

the .ipynb JSON-encoded format and offers the same core function-
alities as Jupyter (e.g., Google Colaboratory3). Furthermore, most

Jupyter notebooks are written in Python. For these reasons we

chose Python Jupyter notebooks as the target of our static analysis

tool.

1https://jupyter.org
2https://github.com/collab-uniba/pynblint
3https://colab.research.google.com

48

2022 IEEE/ACM 1st International Conference on AI Engineering – Software Engineering for AI (CAIN)

CAIN’22, May 16–24, 2022, Pittsburgh, PA, USA Luigi Quaranta, Fabio Calefato, and Filippo Lanubile

2.1 Definition of the linting rules

Pynblint implements a set of checks to assess the quality of note-

books and the code repositories they belong to. We derived each

check (hereafter referred to as linting rule) as an operationalization

of the best practices from our catalog. These best practices range

from recommendations for better traceability and reproducibility

of computations (e.g., “Use version control” and “Manage project

dependencies”) to hints for code quality enhancements (e.g., “Stick

to coding standards” and “Test your code”), and clues for a more

consistent use of notebooks narrative capabilities (e.g., “Leverage

Markdown headings to structure your notebook”).

Not all best practices could be fully operationalized. For instance,

we found no practical way to verify compliance with the recom-

mendation “Distinguish production and development artifacts”. In

other cases, we resorted to partial operationalizations. For exam-

ple, compliance with the best practice “Make your data available”

is verified by detecting the use of DVC, a git-based Data Version

Control system with support for cloud remotes. We plan to extend

these operationalizations in the near future by considering larger

sets of implementations. Meanwhile, the related linting rules can

be disabled if they do not apply to specific professional settings.

In general, customization has been a primary concern in the

design of Pynblint. Not only the predefined linting rules can be

dynamically included or excluded from the analysis, but the linting

engine itself features a plug-in architecture that enables Pynblint

users to add their own linting rules to the core set.

2.2 Interface

Pynblint offers a command-line interface (CLI) capable of displaying

detailed linting results, including the preview of flawed cells. The

tool accepts threemain types of input: (1) standalone Python Jupyter

Notebooks, to be analyzed in isolation; (2) local code repositories

containing Jupyter notebooks (both in the form of uncompressed di-

rectories or compressed .zip archives); (3) GitHub public reposito-
ries containing Jupyter notebooks. In the future, we will extend the

array of available input types by including, for instance, standalone

Google Colab notebooks as well as private GitHub repositories.

Other than rendered in the terminal, results from the linting pro-

cess can be saved as Markdown-formatted reports or serialized in a

machine-readable JSON format, allowing further post-processing.
Exporting results in the HTML format is on our roadmap.

2.3 Usage

Pynblint is available on PyPI, the official Python Package Index,

and therefore can be installed via package managers such as pip
and poetry. Once available in the active Python environment, the
tool can be used to analyze standalone notebooks (e.g., pynblint
Example.ipynb) as well as code repositories containing notebooks
(e.g., pynblint example/project/path).

When analyzing the working directory (i.e., pynblint .), the
linter will start by looking at the contents of the project root. Then,

it will recursively seek Python Jupyter notebooks in all existing

sub-directories. At the end of the process, the results are rendered

in the terminal.

Additional options can be tweaked for customized behavior; for

instance, to save linting results in a Markdown report, an output

filename with the .md extension should be specified (e.g., –output
report.md). More conveniently, recurring options can be declared

in a dotenv file named .pynblint, to be placed in the folder from
which the linter is invoked (typically, the project root).

As a static analyzer, Pynblint can be also leveraged in the context

of CI/CD pipelines. For instance, once installed on a CI/CD server

(e.g., GitHub Actions), it can be invoked alongside other quality

assurance tools at build time. According to user preferences, a build

might fail if the linting process reveals potential notebook defects.

This feature sets Pynblint apart from Julynter [5], which is – to

the best of our knowledge – the only alternative Jupyter linting tool.

Julynter was developed as a plug-in of Jupyter Lab, the evolution

of the Jupyter Notebook IDE; it performs real-time checks on the

quality and reproducibility of Jupyter notebooks while also provid-

ing improvement recommendations. However, Julynter can only

be executed as a live assistant within Jupyter Lab and cannot be

leveraged off-line, as a standalone module. Therefore, while useful

during notebook writing, Julynter cannot be integrated into CI/CD

pipelines and cannot be adopted as a pre-commit hook. Moreover,

being tied to the Jupyter Lab environment, it cannot be used to

analyze notebooks produced with different platforms (e.g., Google

Colab or the Kaggle Notebooks IDE), even if they comply with the

standard Jupyter format (.ipynb).

3 CONCLUSION AND FUTUREWORK

We implemented Pynblint, a static analyzer for Python Jupyter

notebooks. To refine the tool, we are currently conducting a for-

mative study with experienced Jupyter users; at the same time, we

are developing a web front-end for Pynblint, to make it easily ac-

cessible by novice data scientists with limited or no command-line

experience. Furthermore, we will validate the tool with a field study,

involving data science professionals from multiple companies. As a

result of the validation process, we expect to expand the core set of

available linting rules and to make the tool proactive, i.e., capable

of automatically fixing a selected set of violations.

REFERENCES
[1] Souti Chattopadhyay, Ishita Prasad, Austin Z Henley, Anita Sarma, and Titus

Barik. 2020. What’s wrong with computational notebooks? Pain points, needs,
and design opportunities. In Proc. of the 2020 CHI conference on human factors in
computing systems. 1–12. https://doi.org/10.1145/3313831.3376729

[2] Joel Grus. 2018. I don’t like notebooks. https://www.youtube.com/watch?v=
7jiPeIFXb6U&t=0s Joel Grus (Allen Institute for Artificial Intelligence) O’Reilly.

[3] Filippo Lanubile, Fabio Calefato, Luigi Quaranta, Maddalena Amoruso, Fabio
Fumarola, and Michele Filannino. 2021. Towards Productizing AI/ML Models: An
Industry Perspective from Data Scientists. In 2021 IEEE/ACM 1st Workshop on AI
Engineering - Software Engineering for AI (WAIN). IEEE, Madrid, Spain, 129–132.
https://doi.org/10.1109/WAIN52551.2021.00027

[4] Nadia Nahar, Shurui Zhou, Grace Lewis, and Christian Kästner. 2021. Collaboration
Challenges in Building ML-Enabled Systems: Communication, Documentation,
Engineering, and Process. arXiv:2110.10234 [cs] (Dec. 2021). http://arxiv.org/abs/
2110.10234 arXiv: 2110.10234.

[5] João Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.
2021. Understanding and improving the quality and reproducibility of Jupyter
notebooks. Empirical Software Engineering 26, 4 (July 2021), 65. https://doi.org/
10.1007/s10664-021-09961-9

[6] Luigi Quaranta, Fabio Calefato, and Filippo Lanubile. 2022. Eliciting Best Practices
for Collaboration with Computational Notebooks. Proc. ACM Hum.-Comput.
Interact. 6, CSCW1, Article 87 (April 2022). https://doi.org/10.1145/3512934

[7] Jiawei Wang, Li Li, and Andreas Zeller. 2020. Better code, better sharing: On the
need of analyzing jupyter notebooks. In Proc. of the ACM/IEEE 42nd International
Conference on Software Engineering: New Ideas and Emerging Results. ACM, 53–56.
https://doi.org/10.1145/3377816.3381724

49

