
Incorporating Social Software into Agile Distributed Development
Environments

Fabio Abbattista, Fabio Calefato, Domenico Gendarmi, Filippo Lanubile

Università degli Studi di Bari, Dipartimento di Informatica
{fabio, calefato, gendarmi, lanubile}@di.uniba.it

Abstract

Collaborative development tools have become
mainstream technologies for distributed teams, but
they fall short when both agility and distance occur at
the same time. Recently the use of social software
applications, such as wikis and blogs, have emerged as
a practical and economical option to consider as
global teams may use them to organize, track, and
publish their work and then, share knowledge.

We intend to push further the application of social
software principles and technologies into collaborative
development environments for agile and distributed
projects. As a first step, in this paper we first present a
survey of social software, as well as tools and
environments for collaborative development. Then, we
present some opportunities and challenges of
incorporating social software aspects in agile
distributed development.

1. Introduction

Distributed software teams are characterized by
geographical, temporal and sociocultural distance, each
having an impact on all the forms of cooperation
within teams, that is, communication, collaboration
and coordination [1],[4]. While distance exacerbates
the importance of human-centered aspects related to
collaboration in distributed development, even further
challenges arise when teams apply agile development
methods. Agile methods are based upon intense
interactions among individuals and thus, they
emphasize the need for frequent informal
communication and collocated teams [10].

Previous research has already acknowledged that
conventional agile methods need to be adjusted in
globally distributed environments. In fact, although a
number of strategies [14] for supporting distributed
development have been proposed, little is known about
how to address new challenges coming up when agility
is introduced. Recent studies in literature have tried to
address this challenge, providing recommendations for

achieving both agility and distribution, focusing either
on how to improve informal communication and
agreement in agile distributed development scenario
[12],[11], or on strategies and practices to enhance
both flexibility and rigor, thus finding the right balance
between agile and distributed approaches [13],[18].

Recently, besides classic groupware tools (e.g.,
email, shared calendars), other collaborative
applications, known as social software (e.g, blog,
wiki), have shown an appealing ability to overcome
typical issues of remote group interaction, by making
easier to communicate, collaborate, and share
knowledge. With this paper we begin to investigate
how incorporating social software principles and
technologies into collaborative development
environments can also improve communication and
knowledge sharing for distributed teams applying agile
methods.

The remainder of this paper is structured as follows.
Section 2 introduces fundamental principles and
characteristic functionality of the most popular social
software applications. Section 3 presents an overview
of software engineering tools for flexible and
distributed development. Finally, Section 4 ends up
with a discussion on opportunities and challenges of
integrating social software aspects in agile and
distributed development environments.

2. Social software

Social Software is a general term encompassing a
set of tools and applications that enable group
interaction and computer-mediated communication.
The same concept is sometimes expressed as Web 2.0
[17] as it captures distinctive features and key
principles that can be reduced to:
- Participation, content is created and organized by

common users rather than organizations;
- Interaction, applications available from the Web

provide rich user interfaces as desktop applications;

- Community/collaboration, the more people use
such tools, the better they get, and social network
effects emerge.

In the following, we report some key applications of
social software.

Blogs. They represent the simplest way for common
users to create a website where content is added in
form of posts displayed in a reverse chronological
order. Compared to traditional personal websites, the
novelty stands in the opportunity for readers to
interactively leave comments that interconnect
different blogs to each other, generating a particular
community or social network of bloggers, called
blogosphere. Among the very many existing uses,
multi-author blogs can be adopted within a software
team for fostering communication among developers
and customers, as a process document, and as a
stepwise history of project evolution.

Wikis. They can be regarded as a simple web-based
collaborative authoring system. Unlike blogs, a wiki
may not distinguish among reader and writer, and let
anyone create and edit content in form of wiki pages.
Main wiki features include versioning and document
history, which let users track changes applied to
documents. As shown in [15], a wiki can be
successfully used in the software development process,
because it results as an excellent mean to collect
asynchronous contributions from a group of distributed
people in a centralized repository of textual artifacts.

Collaborative tagging and folksonomies. The
activity of labeling resources of interest is called
tagging, as it consists of attaching one or more tags
(i.e., free keywords) to the resource. While individually
using a tagging system, everyone can see who else is
participating by observing others’ tagging behaviors.
This tight feedback loop makes these systems social
and the result is a collection of annotations, also called
a folksonomy [9]. Nowadays, different kind of systems
have introduced folksonomy-based approaches for
information organization, however social bookmarking
systems like del.icio.us were the pioneers and made
tags so popular, letting users store, organize (through
tags), and share bookmarks to digital artifacts.

Social networking. Social networking sites support
users in the shaping of a digital identity through the
creation of profiles and networks of contacts [5].
Popular examples include both professional networks,
like Facebook or Linkedin, and unprofessional ones,
such as MySpace. The creation and maintenance of a
personal publicly accessible profile plays a crucial role
as it serves as a testimonial of digital self-presentation,
not only for your existing friends, but also for making
new ones. This is an important incentive for users to
keep their profiles up to date and enlarge their
networks.

Other Social Software. There are other numerous
applications that can be regarded as social software.
Mashup services, for example, combine data and
services from different sites into a single access point,
providing new functionality. By opening up data and
quickly combining different information in new
interesting ways, mashups can effectively exploit the
large amount of user-generated content available
through social software applications.

3. Tool support for collaborative software
development

Tools provide a considerable help to software
engineering activities. In the case of global software
engineering, adequate tool support is paramount to
enable distributed teamwork. Software engineering
tools to assist distributed projects may fall into the
following categories:

Software Configuration management. A software
configuration management (SCM) tool includes the
ability to manage change in a controlled manner, by
checking components in and out of a repository, and
the evolution of software products, by storing multiple
versions of components, and producing specified
versions on command. SCM tools also provide a good
way for programmers to share software, making sure
that interdependent files are changed together and
controlling who is allowed to. Further SCM tools make
it possible to save messages about what changed and
why. Open-source SCM tools, such as SVN and its
predecessor CVS, have become indispensable tools for
coordinating the interaction of distributed developers.

Bug and issue tracking. This function is centered on
a database, accessible by all team members through a
web-based interface. Other than an identifier and a
description, a recorded bug includes information about
who found it, the steps to reproduce it, who has been
assigned on it, which releases the bug exists in and it
has been fixed in. Trackers are a generalization of bug
tracking systems to include the management of other
issues, such as feature requests, support requests, or
patches.

Build and release management. It allows projects to
create and schedule, typically through a web interface,
workflows that execute build scripts, compile binaries,
invoke test frameworks, deploy to production systems,
and send email notifications to developers. The larger
the project, the greater the need for automating the
build and release functions. Build tools, such as
CruiseControl and its ancestor, the UNIX make utility,
are essential tools to perform continuous integration,
an agile development practice that allows developers to
integrate daily, thus reducing integration problems.

Knowledge center. This function is mostly
document-driven and web-enabled, and allows team
members to share explicit knowledge across a work
unit. A knowledge center includes technical references,
standards, frequently asked questions (FAQs) and best
practices.

Communication tools. Software engineers have
adopted a wide range of synchronous and
asynchronous communication technologies for project
use in addition or replacement of communicating face-
to-face by speech. Email is the most-widely used and
successful collaborative application. Thanks to its
flexibility and ease of use, email can support
conversations, but also operate as a task/contact
manager. However, one of the drawbacks of email is
that, due to its success, people tend to use email for a
variety of purposes and often in a quasi-synchronous
manner. In addition, email is ‘socially blind’ [7],
because it does not enable users to signal their
availability. Recently, chat and IM have been
spreading more and more in the workplace because,
unlike email, they are ‘socially translucent’, providing
a lightweight means to ascertain availability of remote
team members and contact them in a timely manner.

Collaborative development environments (CDE).
They were envisioned by Booch and Brown, who first
acknowledged the need for ‘frictionless surface’ in
development environments [3], motivated by the
observation that much of the developers’ effort is
wasted in switching back and forth between different
applications to communicate and work together.

According to this vision, collaborative features
should be available as components that extend core
applications (e.g., the IDE), thus increasing the users’
comfort and productivity. Therefore, a CDE provides a
project workspace with a standardized toolset to be
used by the global software team. Earliest CDE were
developed within open source software (OSS) projects
because OSS projects, from the beginning, have been
composed of dispersed individuals. Today a number of
CDEs are also available as commercial products or
research prototypes to enable distributed software
development.

SourceForge, from CollabNet, is the most popular
CDE with over 170.000 hosted projects and over
1.800.000 registered users. Its original mission was to
enrich the open source community by providing a
centralized place for developers to control and manage
OSS projects development. SourceForge offers a
variety of free services: web interface for project
administration, trackers, mailing lists and discussion
forums, download notification of new releases, shell
functions and compile farm, and CVS- and SVN-based
configuration management. The commercial versions
for corporate use add features for tracking, measuring

and reporting on software project activities. GForge is
a fork of SourceForge ver. 2.61. It has been
downloaded and configured as in-house server by
many industrial and academic organizations. Like
SourceForge, it also offers a commercial version,
called GForge Advanced Server. Finally, another large
index of free open source software is Freshmeat.

Trac provides an integrated wiki, an issue tracking
system and a front-end interface to SCM tools, usually
SVN. Project overview and progress tracking is
allowed by setting a roadmap of milestones, which
include a set of so-called “tickets” (i.e., tasks, feature
requests, bug reports and support issues), and by
viewing the timeline of changes. Trac also allows team
members to be notified about project events and ticket
changes through email messages and RSS feeds.

MASE is a CDE developed at University of Calgary
[16].  MASE puts a great emphasis on knowledge
sharing as it integrates both informal and formal
knowledge representations into a wiki-based
experience repository.

Jazz is an extensible platform, which leverages the
Eclipse’s notion of plug-ins to build CDE products [8].
The present version has a wide-ranging scope, but in
the former version of Jazz the goal was to integrate
synchronous communication and reciprocal awareness
of coding tasks into the Eclipse IDE, following Booch
and Brown’s vision [3].

4. Discussion

Agile and distributed development practices are so
different that, when blended together, the key
characteristics of the former exacerbate the challenges
intrinsic to the latter. For instance, the need for regular
communication, flexible requirements, and informal
agreement of agile development contrasts with the
large intrinsic reduction of communication, as well as
the need for stable requirements and controlled
processes typical of distributed software development.

However, although previous studies already
suggested balancing practices for tackling these new
dichotomous challenges [18], social software is now
emerging as a practical and economical option to
consider for applying the following practices:

Improve communication. Wikis and blogs are
particularly valuable in distributed projects as global
teams may use them to organize, track, and publish
their work [15]. Recently the use of these collaborative
web-publishing applications has become quite
common, especially for OSS software projects. In the
case of agile distributed development, these forms of
social software can increase the amount of informal
communication exchanged between team members.

Facilitate knowledge sharing. TagSEA [19] is a
research effort that has explored the usefulness of
letting developers annotate pieces of source code with
free tags. In agile distributed settings the maintenance
of the whole process and product repositories can
benefit from the existence of tags used to annotate also
artifacts other than pieces of source code, bringing in
personal and collective rewards.

Build team trust and culture. The necessity to
reduce project costs often makes unfeasible to organize
frequent visits by distributed partners, in order to build
team trust and culture. Traditional global software
development already involves dynamic and evolving
communication-based social networks, often mined for
investigating collaboration and awareness patterns [6].
Agile distributed teams could also exploit social
network profiles as a mechanism to develop digital
identities, establish connections, and thus, build trust
and common culture among people working on same
projects.

Nevertheless, although the use of social software
can be beneficial for agile distributed software
development, new challenges raise from the
observation that successful examples of social software
adoption rely on both large and non-compulsory users
participation. Whether agile and distributed
development environments could meet the same
condition is a research question that needs further
investigation.

Fun factor. Making the use of social software
mandatory for agile teams may take away from
developers the fun of using such tools, a factor that
usually fosters their adoption in general purpose
scenarios [2].

Critical mass. Social software has proven useful
only after building a large base of thousands users or
more. Instead, in the context of distributed software
development, the overall number of developers
scattered over the remote sites is notable lower.

Collaboration as side effect. The social side of
popular social software applications usually does not
represent the main incentive to individual participation
but it is rather an emerging side effect. People
contribute mostly for a private motivation, however the
global scale of the Web, at the end, brings additional
collective benefits. Does the same principle hold for
different contexts, such as agile distributed software
teams?

References

[1] Ågerfalk, P.J., and Fitzgerald, B., “Flexible and
Distributed Software Processes: Old Petunias in New
Bowls?”, CACM, 49, 10, pp. 27-34, 2006.

[2] Avram, G., “At the crossroads of knowledge
management and social software”, Electronic Journal of
Knowledge Management, 4, 1, pp. 1-10, 2006.
[3] Booch, G. and Brown, A.W., Collaborative
Development Environments, Advances in Computers 59,
2003.
[4] Carmel E., Global Software Teams: Collaborating
Across Borders and Time Zones, Prentice Hall PTR, San
Francisco, CA, 1999.
[5] Churchill, E.F. and Halverson, C.A. “Guest Editors'
Introduction: Social Networks and Social Networking”, IEEE
Internet Computing, 9, 5, pp.14-19, 2005.
[6] Damian, D., Izquierdo, L., Singer, J., and Kwan, I.,
"Awareness in the Wild: Why Communication Breakdowns
Occur", Proc. of the Int. Conf. on Global Software
Engineering, pp. 81-90, 2007.
[7] Erickson, T., and Kellogg, W.A., “Social Translucence:
An Approach to Designing Systems that Support Social
Processes”, ACM Transactions on Computer-Human
Interaction, 7, 1, pp. 59-83, 2000.
[8] Frost, R., “Jazz and the Eclipse Way of Collaboration”,
IEEE Software, 24, 6, pp. 114-117, 2007.
[9] Golder, S., and Huberman, B., “Usage patterns of
collaborative tagging systems”, Journal of Information
Science, 32, 2, 2006.
[10] Highsmith, J., and Cockburn, A., “Agile Software
Development: The Business of Innovation”, Computer, 34, 9,
pp. 120-122, 2001.
[11] Korkala, M., and Abrahamsson, P., “Communication in
Distributed Agile Development: A Case Study”,
EUROMICRO SEAA Conference, 2007.
[12] Layman, L., Williams, L., Damian D., and Bures, H.,
"Essential communication practices for Extreme
Programming in a global software development team",
Information and Software Tech, 48, 9, pp. 781-794, 2006.
[13] Lee, G., DeLone, W., and Espinosa, J. A.,
“Ambidextrous coping strategies in globally distributed
software development projects”, CACM, 49, 10, pp. 35-40,
2006.
[14] Lings, B., Lundell, B., Agerfalk, P.J. and Fitzgerald, B.
(2007) A reference model for successful Distributed
Development of Software Systems, In International
Conference on Global Software Engineering (ICGSE 2007),
Munich, Germany August 27-30, 2007, pp. 130-139
[15] Louridas, P., “Using Wikis in Software Development”,
IEEE Software, 23, 2, pp. 88-91, 2006.
[16] Maurer, F., “Supporting Distributed Extreme
Programming”, XP Agile Universe, Extreme Programming
and Agile Methods, LNCS Vol. 2418, pp. 13-23, 2002.
[17] Murugesan, S., “Understanding Web 2.0”, IT
Professional, 9, 4, pp. 34-41, 2007.
[18] Ramesh, B., Cao, L., Mohan, K., and Xu, P., “Can
distributed software development be agile?”, CACM, 49, 10,
pp. 41-46, 2006.
[19] Storey, M.-A., Cheng, L.-T., Bull, I. and Rigby, P.
“Shared Waypoints and Social Tagging to Support
Collaboration in Software Development”, CSCW, pp. 195-
198, 2006.

