
A Hub-and-Spoke Model for Tool Integration
in Distributed Development

Fabio Calefato
Dipartimento Jonico
University of Bari

Taranto, Italy
fabio.calefato@uniba.it

Filippo Lanubile
Dipartimento di Informatica

University of Bari
Bari, Italy

filippo.lanubile@uniba.it

Abstract—Today distributed development depend on an ever-

growing plethora of tools that provide a continual stream of
updates and place developers into a situation of channel overload
and information fragmentation. In this paper, we present our
initial work on the definition of a model, named hub-and-spoke,
for a loosely-coupled integration of development tools that can
help developers cope with these issues, while also increasing their
overall situational awareness.

Keywords—tool integration; information fragmentation;
channel overload; distributed development; awareness; devops

I. INTRODUCTION
Today an ever-growing plethora of different tools are

needed to develop and manage distributed software projects
that keep growing in both size and complexity [2]. Developing
and managing software projects is not easy and doing it
remotely is an even greater challenge. To enable software
developers to work more effectively, other tools are often
introduced, which end up causing channel overload [19]. The
effect of more and more tools producing more and more
information is placing developers into a situation of
information fragmentation [19] and overload [16]. As such, the
productivity of software developers is constantly undermined
by a growing flow of information available at different places:
API documentation to read, source code to traverse, build and
deployment updates, email, RSS feeds and social media
notifications, all provide a continual stream of updates that is
difficult to keep track of.

Keeping up with these updates, however, is as consuming
as vital because they provide developers with different
information elements that are needed to keep aware of what is
happening within a software project, especially if distributed.
In fact, awareness, defined as “an understanding of the
activities of others, which provides a context for your own
activity” [8], is fundamental in distributed software
development as it provides mechanisms to coordinate group
activities [13]. According to Gutwin et al. [10], the members of
a group typically seek information on coworkers, tasks and
artifacts.

Following these information needs, four types of awareness
have been acknowledged so far: (i) informal or presence
awareness, i.e., who is around and their availability; (ii) group-
structural awareness, i.e., members’ roles and teams’ internal
structure; (iii) workspace awareness, i.e., who changed a
shared artifact and when; (iv) social awareness, i.e., the
understanding about existing social connections within a group
[4]. Taken together, these four types help individuals build and
maintain their situational awareness, a tem used in cognitive
psychology to refer to a state of mind where a person is aware
of the elements of their immediate environments. Hipikat [6],
Mylyn [16] and Palantir [17] are three successful examples of
tools that help developers maintain a situational awareness in
software development environments [1].

In this paper, we present our initial work on the definition
of a model for a lightweight, loosely-coupled integration of
software development tools that can help distributed
developers cope with the overload of channels and the
fragmentation of information coming from their usage, while
also increasing their overall situational awareness. We call this
model hub-and-spoke because we identify a few central tools,
i.e., the hubs, to which the other integrated tools are connected
through the spokes. These hubs first aggregate the information
flowing through the spokes and then dispatch it to either other
hubs or team members after performing filtering and ranking
on its elements.

The remainder of the paper is structured as follows. In
Section 2 we review the background on software engineering
tool integration. In Section 3, we illustrate the hub-and-spoke
model in general, whereas in Section 4 we instantiate the
model to illustrate a future case study. Finally, in Section 5 we
present our future work.

II. SOFTWARE ENGINEERING TOOL INTEGRATION
The topic of tool integration flourished during the ‘90s,

following the desire to produce software engineering
environments that would support the entire development
lifecycle through the combination of different tools, each
addressing a different aspect of the development process.
According to Wasserman [20], such environments combine
tools along five dimensions of integration: (i) platform, (ii)
control, (iii) process, (iv) data and (v) presentation.
Accordingly, building an integrated environment results into

one platform that allows project teams to control the entire
development process and its data through a common
presentation layer.

An example of such tool integrations are the IDEs, that is,
integrated development environments built around a source
code editor, a compiler, a debugger and a build automation
tool. As they integrate the core applications of a developer,
IDEs have proved to be helpful to developers in avoiding the
effort of switching back and forth between different
applications [3]. Instead, as further tools were integrated (e.g.,
UML diagrams, communication tools, automated testing tools,
version control systems), developers started to feel IDEs as
unnecessarily bloated [18]. Besides, this form of heavyweight
integration turned out to be problematic since software
development tools and frameworks are generally designed for
extension rather than combination [5],[14]. Thus, despite the
promises of productivity and quality improvements for
developers and teams as well as products and processes,
research in the field faded progressively over the years, leaving
unanswered questions about the benefits of or even the need
for integrated environments [21].

In software engineering research, it is not uncommon to
observe that a thesis proposed in one decade is replaced by its
antithesis during the next one [2]. Therefore, as software first
started to turn into Web services, with the diffusion of Service-
Oriented Architectures (SOA), and then moved to the cloud,
with the spread of the Software-as-a-Service (SaaS) delivery
model, heavy weight integrations started to be replaced by a
loosely-coupled integrations of multiple standalone services
into a new compound one. These lightweight interconnections
of services occur typically through Web APIs, either REST or
RPC-like.

III. A HUB-AND-SPOKE TOOL INTEGRATION MODEL
Fig. 1 shows our model for integrating software

development tools. Instead of proposing the integration along
the five dimensions suggested by Wasserman [20], this model
relies on the lightweight interconnections of services. In other

words, the proposed model ditches the idea of building a single
platform with a unified user interface, instead proposing the
idea of (i) controlling the development process and (ii)
accessing project data through a few central tools.

Such ‘central’ tools are called hubs because they act as
collectors of information produced by satellite tools such as
issue tracking and version control systems, email and IM
clients. In our model, developers still have access to the
satellite tools as usual, without having to use them through a
unified platform. Project-related information flows through the
spokes that connect the satellites to the hubs. In our model, we
envision three types of hubs:

- Continuous Integration (CI) hub

- Continuous Delivery/Deployment (CD) hub

- Communication hub

The Continuous Integration (CI) hub represents the toolset
that a development team adopts to support the frequent (i.e.,
several times a day) integration of code changes in the main
line of development [9]. Typically, it is implemented through a
CI server that automatically builds and tests the code base upon
changes. As for the CD hub, it may refer to either Continuous
Delivery or Continuous Deployment, depending on the
development process adopted [12]. Continuous Delivery means
that a new product release is tested in a stagin environment that
is similar to that of production and, thus, it is ready to ship.
Continuous Deployment, instead, indicates that, after passing
quality assurance tests, the new release is actually and
automatically deployed into production. Both Continuous
Delivery and Deployment are natural extensions of CI because
they presume that developers perform continuous integration of
code changes. Finally, we note that CD and CI hubs are
represented in Fig. 1 as logically separated, although in
practice they might be available through one software solution
(e.g., Travis1).

1 https://travis-ci.org

Fig. 1. The hub-and-spoke integration model

All the three hubs are interconnected, meaning that
notifications flow either way between them. As such, team-
wide communication happens through the Communication hub,
meaning that notifications from the CI and CD hubs – e.g., a
failed build alert – are not dispatched to the team directly, but
rather through the Communication hub. One benefit of this
dispatching solution is that teams have (ideally) one place to go
for checking all project events notifications (more on this
later). The second benefit is the possibility of applying
recommendations to notifications, that is, to filter and rank
them for each developer in order to reduce the information
overload [15]. Implemented by bots, these filtering and ranking
operations can be tailored upon developers’ activities and roles.
More specifically, the information filtering and ranking may
depend on developers’ own awareness network, that is, the set
of relevant teammates whose actions one monitors and to
whom one’s actions are displayed [7]. An awareness network
is the means by which developers keep up to date their overall
situational awareness about teammates, tasks and shared
artifacts; as such, it is highly dynamic because the set of
relevant colleagues constantly changes over time, depending
on one’s task assignments or the current stage of the software
development process. Therefore, the relevance and priority of
notifications dispatched from the Communication hub to
developers will vary depending on the current configuration of
their awareness network.

Furthermore, all satellite nodes are connected to one of the
hubs through an arrow to indicate a unidirectional
communication flow. Instead, between the Communication hub
and the Team messages node there is a bidirectional
communication. This node represents the intra-team
communication tool of choice, which can receive notifications
from as well as send messages to the Communication hub.
Having only one tool handling all the intra-team
communication avoids having separate conversation silos and
relevant information split across them. Thus, all the important
project information from various data sources – messages,
commits and deployments notifications, performance alerts –
are gathered and displayed in one place.

Finally, as for the Commands node, the tool selected for
acting as the Communication hub should be extensible to let
developers interact with the development infrastructure by
simply typing commands. More specifically, this form of
conversation-driven development, or ChatOps as GitHub
popularized it [11], is intended to automate tasks, particularly
Operations tasks, which become easy to the point that any
member of the team can perform them by typing one command
with a familiar user interface. Therefore, our hub-and-spoke
model can be beneficial to foster DevOps practices in
distributed projects through ChatOps. On one hand, ChatOps
pushes towards the automation of delivery and deployment
tasks – then, fostering CD. On the other hand, it can help
organizations blur the line between the roles of Development

and Operations staff and eventually eliminate the distinction –
then, fostering collaboration. In fact, one common anti-pattern
when introducing DevOps to an organization is to build a
'DevOps team', which conversely results in creating new silos
that actually prevent DevOps collaboration [1]. Instead, our
model for tool integration can help team members collaborate
while improving their overall group awareness by encouraging
shared responsibility between the roles of Development and
Operations along the entire development process. In fact,
DevOps collaboration demands making Development staff
more aware of operational concerns such as system
orchestration. Thus, by adopting new automation tools and
practices like those of ChatOps, the Operations staff can help
developers take care of a system not only during its build, but
also when it is released and deployed.

IV. THE INSTANTIATED MODEL
Foobar, a fictional name used hereafter to grant anonymity,

is a medium-sized software company that works in the
publishing industry. The company is distributed across Europe
and the USA, and it has recently opened a development site in
Italy. The company is facing channel-overload and
information-fragmentation issues due to the large set of tools
that developers use in their projects. In addition, the company
is looking for opportunities to spread DevOps practices.

TABLE I. A LIST OF TOOLS CURRENTLY EMPLOYED AT FOOBAR
FOR PROJECT DEVELOPMENT

Category Development tools currently
employed

IDE
Eclipse

WebStorm

ALM
GitLab

HP ALM

CI

Jenkins

TeamCity

CD
Ansible

Jenkins

Build manager Maven

Testing

Jasmine, Karma, PhantomJS,
Protractor, Selenium

Cucumber, Gatling, JUnit,
JMeter, RestAssured

Capybara, Watir

Issue tracking Jira

Package
manager

Artifactory

Bower

Database Liquibase
Task

automation Grunt

As shown in Table I, there are many software tools
currently employed at Foobar, all of which generate a growing
flow of information that both developers and managers find
hard to keep up with. The company has adopted an agile
development process and heavily relies on task automation, as
witnessed by the extensive use of testing frameworks and
CI/CD tools.

In Fig. 2, we show the hub-and-spoke integration model
instantiated with respect to the needs of the Foobar company.
Although the Italian site contributes to projects written in three
main programming languages (Java, JavaScript and Ruby), the
instantiated model refers in particular to the case of Java
projects. For JavaScript and Ruby projects, the testing
frameworks would change accordingly. In addition, in Fig. 2
we represent the case where Jenkins2 is used as CI server, but
our approach described next would not change for projects
where TeamCity3 is used instead

The instantiated model proposed here builds around the
extensibility of the tools selected to act as the hubs; Jenkins,
Ansible 4 and Slack5 . These tools offer a great degree of
extensibility and a large set (hundreds) of plugins already
available. As shown above, Jenkins collects all the event
notifications coming from the continuous integration of
software changes, whereas Ansible handles the events related
to the deployment of new releases to the Artifactory repository.
These integrations are implemented by adding the related
plugins to the CI/CD servers (e.g., the GitLab plugin) and
configuring the location where resources are hosted (e.g., the
Git repository URL from which to retrieve the code to build
and test) or need to be published (e.g., the Artifactory
repository location).

As for implementing the communication hub, we propose
the adoption of Slack to achieve the goal of controlling the

2 https://jenkins-ci.org
3 https://www.jetbrains.com/teamcity
4 http://www.ansible.com
5 https://slack.com

development process and accessing data from one central
place. Albeit not currently used at the Foobar company, the
variety of Slack APIs allows collecting both notifications from
tools and developers, as well as implementing conversation-
driven development through ChatOps commands. More
specifically, Slack offers the following APIs, all of which
enforce security by requiring authentication through app-
specific access tokens or OAuth2 protocol:

- Webhooks API, allows the processing of both outgoing
and incoming messages, respectively, sent and
received as HTTP requests with a JSON payload using
specific URLs.

- Slash Commands API, allows the definition of custom
commands (starting with a slash and followed by
parameters, e.g., /command params), which trigger
actions that enable users to interact with external
services directly from Slack.

- Real Time Messaging API, a WebSocket-based API
that allows receiving events from Slack in real time
and send messages through it as well.

- Bot Users API, uses the Real Time Messaging API to
build bots that are useful to monitor incoming
messages and react to them.

- Web API, an HTTP RPC API to build applications that
require interacting with Slack in more complex ways
than those possible with the other APIs.

In particular, we intend to use the Slash Command API to
implement custom ChatOps commands that would help, for
example, the developer staff take care of the deployment (e.g.,
/deploy project-name location), force a new build
(e.g., /build project-name) or re-execute test suites even
without changes to the code repository (e.g., /test
project-name alltests). In general, we foresee to add
several commands to control the various phases of the
development process.

Fig. 2. The instantiated hub-and-spoke model

Furthermore, Jenkins and Ansible are going to be
integrated with Slack using the Webhooks API, thus defining a
publish/subscribe communication model for dispatching
notifications to and from the Communication hub. Regarding
the Real Time Messaging API, it will be used to route
messages that are relevant for the project coming from other
communication sources (e.g., email clients). As for the Bot
Users API, it will be used to implement automatic reaction to
certain messages. For example, a bot can proactively respond
to performance alerts of an application deployed to the cloud
and automatically add new nodes to handle the increased traffic
load. Besides, bots would enable the filtering and prioritization
of notifications. In fact, Slack is intended to collect all the
project- and team-related communications, it is soon going to
be overloaded with them. In addition, Slack has a limited
support for filtering, as it allows the definition of channels,
similar to IRC chat rooms where information can be
categorized, and silencing notifications unless one’s recipient
(in the form of @username) is specified in the message body.
Thus, bots can implement more sophisticated
recommendations based of the severity of the messages and the
structure of the development team. For example, a team
manager may not want to be notified of all new bug reports,
but is definitely willing to receive a prompt alert in case of
crash reports. Finally, we are going to use the Web API to
create tool integrations other than those listed above as we see
fit.

Finally, we note that the instantiated model that we just
presented might be extended with other hubs that fulfill future
needs of the company, as long as they can be connected to the
communication hub.

V. CONCLUSIONS & FUTURE WORK
In this paper, we have presented a model for a lightweight,

loosely-coupled integration of software development tools. We
argued that our hub-and-spoke model can help developers fight
the channel-overload and information-fragmentation problems
while also increasing at the same time the awareness of the
elements in their working environment. As future work, first
we intend to complete the implementation of the instantiated
model and, then, we will conduct a case study to test whether
and how the hub-and-spoke model work in large distributed
software projects.

ACKNOWLEDGMENTS
This work fulfills the objectives of the PON&RC project

“Digital Services Ecosystem (DSE)” and it is also partially
funded by the project ‘Investigating the Role of Emotions in
Online Question & Answer Sites’ under the program
“Scientific Independence of young Researchers” (SIR). Both
projects are funded by the Italian Ministry of University and
Research (MIUR).

REFERENCES
[1] O. Baysal, R. Holmes, and M.W. Godfrey. “Situational awareness:

personalizing issue tracking systems.” In Proc. of Int’l Conf. on
Software Engineering (ICSE '13). 2013, pp. 1185-1188.

[2] B. Boehm. “A view of 20th and 21st century software engineering.” In
Proc. of 28th ACM Int’l Conf. on Software engineering (ICSE '06), 2006,
pp. 12-29, DOI=10.1145/1134285.1134288

[3] G. Booch and A.W. Brown. “Collaborative Development
Environments.” Advances in Computers, Vol. 59, 2003, pp. 1–27, DOI=
10.1016/S0065-2458(03)59001-5

[4] F. Calefato and F. Lanubile, “Augmenting Social Awareness in a
Collaborative Development Environment.” In Proc. of 5th Int’l
Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE ’12), 2012, pp. 12-14, DOI=10.1109/CHASE.2012.6223009

[5] F. Calefato and F. Lanubile. “Using Frameworks to Develop a
Distributed Conferencing System: An Experience Report.” Software:
Practice & Experience, Vol. 39, No. 15, 2009, pp. 1293–1311,
DOI=10.1002/spe.937.

[6] D. Cubranic, G.C. Murphy, J. Singer, and K.S. Booth. “Hipikat: a
project memory for software development.” IEEE Transactions on
Software Engineering, Vol. 31, No. 6, 2005, pp. 446-465,
DOI=10.1109/TSE.2005.71

[7] C.R.B. de Souza and D.F. Redmiles “The Awareness Network, To
Whom Should I Display My Actions? And Whose Actions Should I
Monitor?” IEEE Transactions on Software Engineering, Vol. 37, No. 3,
2011, pp. 325-340, DOI=10.1109/TSE.2011.19

[8] P. Dourish and V. Bellotti. “Awareness and coordination in shared
workspaces.” In Proc. of ACM Int’l Conf on Computer-supported
cooperative work (CSCW '92). 1992, pp. 107-114.
DOI=http://dx.doi.org/10.1145/143457.143468

[9] P.M. Duvall, S. Matyas, and A. Glover “Continuous Integration:
Improving Software Quality and Reducing Risk.”. Pearson Education,
2007

[10] C. Gutwin, S. Greenberg, and M Roseman. “Workspace Awareness in
Real-Time Distributed Groupware: Framework, Widgets, and
Evaluation.” In Proc. of HCI ’96: People and Computers XI, 1996, pp
281-298, DOI= 10.1007/978-1-4471-3588-3_18

[11] G.V. Hulme. “ChatOps: Communicating at the speed of DevOps.” Last
accessed: Feb. 3, 2016, http://devops.com/2014/07/16/chatops-
communicating-speed-devops/

[12] J. Humble and D. Farley. “Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation.” Addison-
Wesley Professional, 2010.

[13] F. Lanubile, F. Calefato, and C. Ebert, “Group Awareness in Global
Software Engineering.” IEEE Software, Vol. 30, Issue 2, 2013, pp. 18-
23, DOI=10.1109/MS.2013.30

[14] M. Mattsson, J. Bosch, and M.E. Fayad. “Framework integration
problems, causes, solutions.” Communications of the ACM, Vol. 42, No.
10, 1999, pp. 80–87, DOI=10.1145/317665.317679

[15] M.P. Robillard, R.J. Walker, and T. Zimmermann. “Recommendation
systems for software engineering.” IEEE Software, Vol. 27, No. 4, 2010,
pp. 80-86, DOI=10.1109/MS.2009.161

[16] G. Murphy, “Attacking Information Overload in Software
Development”. In Proc. of IEEE Symposium on Visual Languages and
Human-Centric Computing. (VL/HCC ’09), 2009,
DOI=10.1109/VLHCC.2009.5295312

[17] A. Sarma, D.F. Redmiles, and A. van der Hoek, “Palantir: Early
Detection of Development Conflicts Arising from Parallel Code
Changes.” IEEE Transactions on Software Engineering, Vol. 38, No. 4,
2012, pp. 889-908, DOI=10.1109/TSE.2011.64

[18] J. Sonmez. “Why The IDE Has Failed Us.” Last accessed: Feb. 5, 2016,
http://simpleprogrammer.com/2010/08/03/why-the-ide-has-failed-us/

[19] M.A. Storey, L. Singer, F. Figueira Filho, A. Zagalsky, and D.M.
German, “How Social and Communication Channels Shape and
Challenge a Participatory Culture in Software Development” IEEE
Transactions on Software Engineering (to appear).

[20] A.I. Wasserman. “Tool integration in software engineering
environments” In: Lecture Notes in Computer Science, Vol. 647, 1989,
pp. 137–149, DOI= 10.1007/3-540-53452-0_38

[21] M.N. Wicks and R.G. Dewar. “A new research agenda for tool
integration.” Journal of Systems and Software, Vol. 80, No. 9, 2007, pp.
1569-1585, DOI=10.1016/j.jss.2007.03.089

[22] R. Wilsenach. “DevOps Culture.” Last accessed: Jan. 30, 2016,
http://martinfowler.com/bliki/DevOpsCulture.html

