
 
Peer-to-Peer Remote Conferencing  

 
 

Fabio Calefato, Filippo Lanubile, Teresa Mallardo 
Dipartimento di Informatica,  

University of Bari 
{calefato | lanubile | mallardo}@di.uniba.it 

 
 

Abstract 
 

Global software development (GSD) is nowadays 
pervasive among large enterprise organizations. Physical 
separation in GSD has raised many issues, mainly due to 
cross-sites communication and coordination problems, 
which have made software development an even more 
challenging task. Hence, distributed workgroups need 
tools to support a load of activities that usually take place 
through the direct interaction among people. This paper 
presents a tool, called P2PConference, to conduct 
conferences over a distance. The tool provides basic 
features for simple brainstorming sessions as well as 
more sophisticated features to accommodate the needs of 
other types of meetings, such as presentations and panels. 
P2PConference adopts a decentralized architecture and 
it is implemented upon a peer-to-peer infrastructure 
platform, called JXTA.  
 
 
1. Introduction 
 

Over the last few years, large enterprise organizations 
have embraced global software development distributed 
over multiple geographical sites [9]. Communication is 
the core function of cooperation that allows information 
to be exchanged between team members. Distance has a 
negative effect for communication-intensive tasks, such 
as software design, and on spontaneous conversation [8], 
where people informally communicate valuable pieces of 
information.  

Distance is usually offset by Internet-based 
technologies: globally distributed workgroups typically 
rely on centralized systems, mostly built on top of web-
based development platforms, to support collaboration 
across time and space. However, peer-to-peer (P2P) 
applications, based on a decentralized architecture, are 
increasingly becoming popular to exchange instant 
messages, share common information and applications, 
and jointly review/edit documents. Collaborative P2P 
applications exhibit the following advantages with respect 
to client-server counterparts: 

• Autonomy. In a P2P system every peer is an equal 
participant while being a final authority over its local 
resources. In this way everyone can share 
information but, at the same time, can pose 
restrictions on confidential data through access rights 
management and data encryption. When enterprise 
data are distributed on many places and on different 
devices, P2P systems can provide an easier and 
cheaper alternative to enforcing a convergence into a 
centrally managed data repository.  

• Intermittency. P2P systems are designed by giving 
for grant that any peer can disappear at any time 
because of network disconnections, either deliberate 
or accidental. P2P collaborative systems use resource 
replication and different synchronization 
mechanisms, based on proxies for sending/receiving 
messages in the network on behalf of the 
disconnected sender/receiver. In this way, users can 
work to shared content even when offline and 
automatically propagate changes at the first 
reconnection.  

• Immediacy. P2P applications have shown themselves 
able to support direct exchanges between peers, as in 
the case of instant messaging. P2P collaboration 
systems, based on near real-time communication 
mechanisms and synchronous presence of the peers, 
can provide immediate responses by participants to 
enable effective person-to-person interaction. 

• Cost lowering and compartment. P2P systems are 
valuable means to lower infrastructure cost by using 
existing infrastructure and distributing the 
maintenance costs. Centralized systems that serve 
many clients typically bear the majority of the cost of 
the system. When the cost becomes too large, a P2P 
architecture can help spread it over all the peers. 

 
Under these conditions, a P2P collaborative 

infrastructure can complement or even replace client-
server platforms for the creation of ad-hoc or small 
workgroups, drastically reducing the cost of infrastructure 
setup and ownership. Due to P2P own features, it is 
possible to quickly establish dynamic collaborative 



groups, composed of people from different organizations 
accessing shared resources and interacting in a near real-
time manner.  

 
This paper presents P2PConference, a P2P remote 

conferencing tool which has been developed at the 
University of Bari. In the next sections, we first introduce 
the underlying platform and then describe how the tool 
works. In the last section, we show how the tool is 
evolving. 
 
 
2. JXTA 
 

P2PConference has been developed using the Java 
implementation of JXTA [10], a network programming 
and computing platform for P2P systems. Project JXTA 
was originally conceived by Sun Microsystems and 
designed with the participation of a small number of 
experts from academic institutions and industry. The 
platform was released as an open source project early in 
the 2001 to become the standard foundation for P2P 
systems.  

The project had to address some issues that were set as 
objectives [7]: 

 
• Interoperability. Nowadays there are several P2P 

systems that, though offering the same services (e.g. 
file sharing), are incompatible because of the lack of 
a common infrastructure. This issue is referred to as 
danger of fragmentation [14]. JXTA aims at 
becoming the missing standard and, hence, it has 
been proposed to IETF [12]. 

• Platform independence. No target platform (as both 
programming language and operative system) has 
been chosen to develop JXTA, thus to embrace a 
larger base of developers and final users. 

• Ubiquity. JXTA has been designed to be 
implemented on a wide range of digital devices, from 
cell phones to servers. 

 
At the highest abstraction level, JXTA is a set of six 

protocols, each defined by XML-based message 
exchange:  

 
• Peer Discovery Protocol (PDP) 
• Peer Revolver Protocol (PRP) 
• Peer Information Protocol (PIP) 
• Peer Membership Protocol (PMP) 
• Pipe Binding Protocol (PBP) 
• Endpoint Routing Protocol (ERP) 

 
JXTA technology is designed to provide a layer on top 

of which other services and applications are built (see 

Figure 1). Typical P2P software stacks break down into 
three layers. The lowest level (referred to as JXTA core) 
deals with peer establishment, communication 
management, such as routing. In the middle (JXTA 
services) the layer provides higher level services, such as 
indexing, searching and file sharing, built upon the low-
level features of the core. At the top is the layer of 
applications (JXTA applications): any P2P system built 
using the services beneath. 

 
 

Any peer on the extended Web

Security

Peer 
Commands

Peer 
Shell

JXTA community

applications
Sun 
JXTA
applications

JXTA community services
• Indexing
• Searching
• File Sharing

Sun JXTA
services

Peer Groups Peer Pipes Peer Monitoring

Sun 
JXTA
applications

JXTA
applications

JXTA
services

JXTA
core

P2PConference

Any peer on the extended Web

Security

Peer 
Commands

Peer 
Shell

JXTA community

applications
Sun 
JXTA
applications

JXTA community services
• Indexing
• Searching
• File Sharing

Sun JXTA
services

Peer Groups Peer Pipes Peer Monitoring

Sun 
JXTA
applications

JXTA
applications

JXTA
services

JXTA
core

Any peer on the extended Web

Security

Peer 
Commands

Peer 
Shell

JXTA community

applications
Sun 
JXTA
applications

JXTA community services
• Indexing
• Searching
• File Sharing

Sun JXTA
services

Peer Groups Peer Pipes Peer Monitoring

Sun 
JXTA
applications

JXTA
applications

JXTA
services

JXTA
core

Any peer on the extended Web

Security

Peer 
Commands

Peer 
Shell

JXTA community

applications
Sun 
JXTA
applications

JXTA community services
• Indexing
• Searching
• File Sharing

Sun JXTA
services

Peer Groups Peer Pipes Peer Monitoring

Sun 
JXTA
applications

Any peer on the extended Web

Security

Peer 
Commands

Peer 
Shell

JXTA community

applications
Sun 
JXTA
applications

JXTA community services
• Indexing
• Searching
• File Sharing

Sun JXTA
services

Peer Groups Peer Pipes Peer Monitoring

Any peer on the extended Web

Security

Peer 
Commands

Peer 
Shell

JXTA community

applications
Sun 
JXTA
applications

JXTA community services
• Indexing
• Searching
• File Sharing

Sun JXTA
services

Any peer on the extended Web

Security

Peer 
Commands

Peer 
Shell

JXTA community

applications
Sun 
JXTA
applications

Any peer on the extended Web

Security

Peer 
Commands

Peer 
Shell

JXTA community

applications
Sun 
JXTA
applications

Any peer on the extended Web

Security

Peer 
Commands

Peer 
Shell

JXTA community

applications
Sun 
JXTA
applications

Any peer on the extended Web

Security

Any peer on the extended WebAny peer on the extended Web

Security

Peer 
Commands

Peer 
Shell

JXTA community

applications
Sun 
JXTA
applications

JXTA community services
• Indexing
• Searching
• File Sharing

Sun JXTA
services

Peer Groups Peer Pipes Peer MonitoringPeer Groups Peer Pipes Peer Monitoring

Sun 
JXTA
applications

JXTA
applications

JXTA
services

JXTA
core

JXTA
applications

JXTA
services

JXTA
core

JXTA
services

JXTA
core

P2PConference

 
Figure 1. The layered architecture of JXTA 

 
 

3. P2PConference 
 

P2PConference was inspired by the eWorkshop tool 
[1] from CeBASE [5]. eWorkshop is a simple web-based 
collaboration tool to organize and conduct remote, text-
based meetings with the aim of gathering and 
synthesizing knowledge from a group of invited experts. 
However, P2Pconference is not a mere porting of 
eWorkshop onto the JXTA platform. Other than 
replicating the basic features of eWorkshop, we have 
added new capabilities to run different types of remote 
conferences, and allow organizers to exercise more 
control on the participants.  
 

The primary functionality provided by the 
P2PConference is a closed group chat with agenda, 
whiteboarding and typing awareness capabilities. The tool 
allows participants to communicate by typing statements 
that will appear on all participants’ message boards. By 
responding to statements on the message board, they can 
carry on a discussion on-line. Around this basic feature, 
we built other features to help organizers control 
discussion. 

 
The organization of a remote conference (or simply 

conference, hereafter) follows a strict protocol which 
mandates the organizers to choose the main discussion 
topic, schedule the meeting and decide whether or not to 
run training sessions (to let participants try out the tool), 
and, finally, send invitations to participants by e-mail. 



Most participants in a conference are experts in their 
respective domain. Organizing a new conference implies 
to set up a support team, which consists of the following 
roles: moderator, director and scribe. 

The director is the actual conference organizer, since 
he/she is supposed to choose the main discussion topic 
and the items that it is composed of, schedule the 
conference and send invitation e-mails, which contain an 
user id and password to join the discussion. 
The moderator is responsible for monitoring and focusing 
the discussion (e.g. proposing items on which to vote) 
and maintaining the agenda. Among the support team 
members, only the moderator is an active participant in 
the sense that he contributes actual responses during the 
meeting. He/she is also responsible for assessing and 
setting the pace of the discussion, that is, he/she decides 
when it is time to redirect the discussion onto another 
item. 
As the discussion moves from one item to another, the 
scribe captures and organizes the results displayed on the 
whiteboard area of the screen. When the participants have 
reached a consensus on a particular item through a vote, 
the scribe summarizes and updates the whiteboard to 
reflect the outcome. The content of the whiteboard 
becomes the first draft of the meeting minutes. 
 

The tool screen has five main areas: agenda, input 
panel, message board, whiteboard, and presence panel 
(see Figure 2). 

The agenda is managed by the moderator and 
indicates the status of the meeting (“started”, “stopped”) 
as well as the current item under discussion.  
The input panel enables participants to type and send 
statements during the discussion. 
The message board is the area where the meeting 
discussion takes place. Statements are displayed 
sequentially, tagged with the time of when they were sent 
and the sender’s name. 
The whiteboard is used to synthesize a summary of the 
discussion and is controlled by the scribe. In order to 
realize the goal of measuring the level of consensus 
among the participants, all of the items added to the 
whiteboard are subject to voting announced by the 
moderator. When participants do not agree with how the 
statements on the whiteboard were formulated, 
negotiations initiate in order to come up with a more 
accurate description of the results of the discussion. 
The presence panel shows participants currently logged 
in and the played role. 

 
 

 
Figure 2. P2PConference screenshot 

 
All of these features can also be found in the 

eWorkshop tool. We further enhanced support for remote 
conferencing by adding the following features: 

 
• Control. Conference organizers need more control 

power over participants. Hence, we also added 
freezing − moderator can freeze those experts who 
disturb, forbidding them to type and ensuring the 
discussion to flow smoothly (see Figure 3a) − and 
hand raising, that is participants must ask the 
moderator the right to talk or ask questions. 

• File sharing. A collaborative tool cannot be such 
without file sharing capability (see Figure 3b). 

• Protection. A conference is said to be “protected” if it 
does not allow users to access the drafts (i.e. the 
discussion log and the whiteboard content) saved by 
the peer into HTML files. The only participant 
allowed is the director. This option ensures the 
organizers that no one else can carry on a conference 
analysis. 

 
Indeed, the presence of the moderator only prevents 

the discussion to become unconstrained, ensuring that all 
of the items in the conference agenda are discussed. This 
kind of remote meeting is apt for brainstorming sessions 
with limited or no control over the participants for the 
organizers. We did not want to bind the organizers to run 
only brainstorms and, hence, we identified three different 
types of existing conferences to model and implement in 
P2PConference: 
 
• Meeting. It ensures a limited control power since the 

moderator can only “freeze” disturbing participants 
(i.e., the moderator may forbid them to type and send 
statements). This conference type models simple, 
remote brainstorms. 

 



• Presentation. This is a more complex kind of 
conference: one special invited expert, the speaker, 
delivers his own speech and the other invited experts 
(i.e., the audience) can ask him/her questions, after 
“raising their hands”. The moderator manages the 
queue of the asked questions (see Figure 4a). 

• Panel. It is a generalization of presentation: there is 
more than one speaker, the so-called panelists, and, 
since any of them can deliver a speech, they have to 
request the right to speak by “raising their hands” 
(see Figure 4b). Moreover, the experts who want to 
ask a question are to pick the panelist(s) and raise 
their hands too. Hence, the moderator manages two 
separate queues, one for the panelists and one for the 
experts 

 
 
 

  
a. b. 

Figure 3. The presence panel with freezing menu (a) 
and the search panel (b) 

 
 
 

 
a. 

 
b. 

Figure 4. Hand raising panels for question requests (a) 
and speaking requests (b) 

 
 

5. Conclusions and Further Work 
 

In the field of collaborative software development 
(CSD) environments P2P technology and decentralization 
have begun to being introduced [2, 3].  

In this paper we have described P2PConference, a tool 
for running remote conferences. The tool is also an open-
source software hosted at the Project JXTA site [11]. 
Currently, one of the authors has the role of project 
owner, two fifth-year computer science students act as 
developers (committers), and thirteen people are 
contributors (mainly for issue reporting and bug fixing).  

Much of the tool functionality has been implemented 
in the first release. Also, we plugged P2Pconference into 
IBIS [13], a tool developed at the University of Bari to 
support software inspections for geographically dispersed 
teams. Using Java Web Start [15], inspectors can launch 
P2PConference and run a kickoff meeting to provide 
background information on the inspection process or the 
product being inspected.  

Current work is aimed to make deployment easier, by 
automating the initial peer configuration, and add support 
for presentation sharing and co-browsing. As further 
work, we are planning to develop a remote-conferencing 
plugin to integrate our tool in an extensible IDE, such as 
the Eclipse Platform [6]. 
 
 
6. References 
 
[1] V. Basili et al., “Building an Experience Base for 
Software Engineering: A report on the first CeBASE 
eWorkshop”, Proc. of International Conference on 
Product Focused Software Process Improvement 
(PROFES 2001), Kaiserslautern, Germany, September 
2001, pp 110-125. 
[2] bitkeeper.com, BitKeeper Source Management, 
http://www.bitkeeper.com/Products.BK_Pro.html 
[3] S. Bowen, and F. Maurer, “Using peer-to-peer 
technology to support global software development – 
some initial thoughts”, Proc. of the Int. Workshop on 
Global Software Development (ICSE 2002), Orlando, FL, 
USA, May 2002. 
[4] G. Canfora, F. Lanubile, and T. Mallardo, “Can 
Collaborative Software Development Benefit from 
Synchronous Groupware Functions?”, Proc. of the 2nd 
Workshop on Cooperative Supports for Distributed 
Software Engineering Processes (CSSE 2003), 
Benevento, Italy, March 2003. 
[5] CeBASE Web Site, http://www.cebase.org 
[6] eclipse.org, Eclipse Foundation website, 
http://www.eclipse.org 



[7] L. Gong, “JXTA: A network programming 
environment”. IEEE Internet Computing, 5(3):88--95, 
May-June 2001. 
[8] J. D. Herbsleb and R. E. Grinter, “Architecture, 
Coordination, and Distance: Conway’s Law and 
Beyond”, IEEE Software, Vol. 16, No. 5, 
September/October 2001, pp. 16-20, pp.63-70. 
[9] J. D. Herbsleb and D. Moitra, Global Software 
Development, IEEE Software, Vol. 18, No. 2, 
March/April 2001, pp. 16-20. Software Engineering, 
IEEE Software, Vol. 19, No. 3, May/June 2002, pp. 26-
38. 
[10] jxta.org, Project JXTA Home Page, 

http://www.jxta.org 
[11] jxta.org, P2PConference Home Page, 
http://p2pconference.jxta.org 
[12] jxta.org, IETF standardization effort, 
http://www.jxta.org/IETFStandard.html 
[13] F. Lanubile, and T. Mallardo, “Tool Support for 
Distributed Inspection”, Proc. of International Computer 
Software and Applications Conference (COMPSAC 
2002), Oxford, UK, 2002. 
[14] D.S. Milojicic et al. “Peer-to-Peer Computing”, HP 
Laboratories Palo Alto, March 2002 
[15] sun.com, Java Web Start Technology, 
http://java.sun.com/products/javawebstart 

 
 


