
Evolving a Text-Based Conferencing System: 
An Experience Report 

 

Fabio Calefato, Filippo Lanubile, Mario Scalas 
Dipartimento di Informatica 

University of Bari 
Bari, Italy 

{calefato | lanubile | scalas}@di.uniba.it

 
 

Abstract—In this paper we describe the evolution of eConference, 
a text-based conferencing system that has turned into a 
collaborative platform. We draw the lessons learned from the 
evolution process, as first we changed the underlying 
communication framework, from the JXTA P2P platform to the 
XMPP client/server protocol, and then its overall architecture, 
from traditional plugin to pure-plugin system, built on top of the 
Eclipse Rich Client Platform. 

Keywords-distributed meeting system, Jabber/XMPP, JXTA, 
communication frameworks, Eclipse RCP, plugin systems; 

I. INTRODUCTION 
Working across distances has become commonplace today. 

Nevertheless, distance poses hard challenges due to substantial 
reduction in frequency and richness of communication [12].  

In this paper we describe the evolution of eConference, a 
text-based conferencing system developed at the University of 
Bari. The tool is part of a broader research effort that aims at 
better supporting interaction of nimble, ad hoc teams (i.e., goal-
oriented workgroups with no history and future, such as 
distributed inspection teams), which need low-cost 
administration infrastructure just to complete the task at hand. 
As an instance of the broader category of distributed meeting 
systems, complexity and usability are major problems. People 
need to focus on the content of their meeting, not on the 
meeting tool itself, and thus, features have to be chosen 
carefully to maximize the tool effectiveness while minimizing 
complexity. However, the scope of a distributed meeting 
system goes beyond supporting users' activities during the 
meeting itself, but also to facilitating the arrangement and set 
up of meetings. 

Here we also discuss the lessons learned from the evolution 
of the eConference tool. Our prototype has evolved through the 
years, first changing the underlying communication 
framework, from the JXTA P2P platform to the XMPP 
client/server protocol, which has proved to be a more robust 
and reliable solution to develop an extensible tool for 
distributed meetings. Then, in the latest version, eConference 
has evolved from a conferencing system to a pure-plugin 
collaborative framework, built on top of the Eclipse Rich Client 
Platform. 

The remainder of this paper is structured as follows. In 
Section 2 we briefly describe the tool. In Section 3 problems 
encountered during the development with JXTA are discussed. 
Section 4 explains XMPP and the motivation for its adoption. 
Section 5 first illustrates the pilot study and then discusses the 
results, which have been used to further improve the tool. In 
Section 6 we discuss the lessons learned. Finally, in Section 7 
we draw conclusions and provide directions for future work. 

II. TOOL DESCRIPTION 
eConference is a text-based distributed meeting system. 

The primary functionality provided by the tool is a closed 
group chat, augmented with agenda, meeting minutes editing 
and typing awareness capabilities. Around this basic 
functionality, other features have been built to help organizers 
control the discussion during distribute meetings. Indeed, 
eConference is structured to accommodate the needs of a 
meeting without becoming an unconstrained on-line chat 
discussion. The inceptive idea behind the eConference is to 
reduce the need for face-to-face meetings, using a simple 
collaboration tool that minimizes potential technical problems 
and decreases the time it would take to learn it.  

The tool screen has six main areas: agenda, input panel, 
message board, hand raising panel, edit panel, and presence 
panel (see Fig. 1). The agenda indicates the status of the 
meeting (“started”, “stopped”), as well as the current item 
under discussion. The input panel enables participants to type 
and send statements during the discussion. The message board 
is the area where the meeting discussion takes place. The hand 
raising panel is used to enable turn-based discussions. The edit 
panel is used to synthesize a summary of the discussion. The 
presence panel shows participants currently logged in and the 
role they play. Finally, the hand raise panel mimics the hand-
raise social protocol that people use during real meetings to 
coordinate discussion and turn-taking. Compared to the real-
life social protocol, the hand raise feature of eConference also 
gives to the moderator the ability to preview queued questions, 
showing a tooltip when hovering the mouse pointer over them 
(see Fig. 2). 

The organization of a meeting in eConference follows a 
protocol inspired by the eWorkshop tool [2]. The meeting 
organizer is guided by a wizard through a few steps in order to 
1) define the main topic and the agenda of the meeting, 2) 



specify participants invited and their roles, and, finally, 3), 
schedule the conference and training sessions, if necessary. 

When inviting participants, the meeting organizer has to 
select who will act as moderator and scribe. The moderator is 
supposed to facilitate the meeting and has control over 
participants, whereas the scribe captures and summarizes the 
discussion in the edit panel. Thus, the content of the panel 
becomes the first draft of the meeting minutes. The role of 
scribe is flexible in that the participant who is selected as scribe 
can change over time and there can be more than one scribe at 
a time. Finally, some participants may also be invited as 
observers, in that they will attend the meeting, but they will not 
be able to actively contribute to the discussion. 

III. P2PCONFERENCE: PROBLEMS WITH JXTA 
The first version of our tool, also known as P2PConference 

[4], was developed using the Java binding of JXTA [13]. 
Project JXTA is an open-source effort led by Sun 
Microsystems, which provides a general purpose, language 
independent middleware for building P2P applications. It 
defines an XML-based suite of protocols that build a virtual 
overlay network on top of the existing physical network, with 
its own addressing and routing mechanisms. The building 
blocks of the JXTA network are rendezvous and relay peers, 
also referred to as super peers, which deal respectively with the 
resources discovery and message routing.  

The development of P2PConference started in March 2002 
using the Java binding of JXTA. The first useable version of 
P2PConference was released at the end of 2002. The project 
was active during the year 2003, when file sharing and co- 
browsing features were added, but it was completely 
discontinued in 2004. Eight different releases of the platform 
were used for the development of P2PConference.  

The choice of adopting a fully-decentralized, P2P approach 
stemmed from our intent of building a distributed meeting 
system easy to use and set up, with administration cost kept at 
minimum. JXTA seemed a promising technology because, by 
exploiting its virtual network, we aimed at using existing 
resources that live on the edge of the Internet infrastructure 
(e.g., bandwidth, storage space of the PCs running 
eConference). No central server to maintain and no single point 
of failure is what the platform promised. JXTA did not deliver 
on all of its promises though.1 

A. Low level API & End User Complexity 
One of the main disadvantages of JXTA was its overly low-

level API, which made developers subject to frequent changes. 
A low level API was probably considered as a means to build a 
general purpose middleware and grant flexibility to developers, 
but it ended up adding considerable amount of extra code and 
complexity. Furthermore, JXTA was not only complex for 
developers, but even for end users who had to know about its 
internals because, the first time a JXTA peer was started and 
each time network configuration changed, the platform had to 
be manually set up through a complex configurator. 

                                                           
1 All the experiences reported and judgments expressed here refer to versions 

of the platform previous to JXTA 2.3. 

 
Figure 1. A screenshot of eConference ver 1.0 

 

 
Figure 2. Preview of a question as tooltip 

B. Lack of reliable messaging mechanisms 
The main issue that forced us to abandon the P2P platform 

was the inadequateness of the JXTA messaging service. In 
JXTA the fundamental abstraction used for inter-peer 
communication is the pipe, a virtual channel that consists of an 
input and an output end. JXTA offered different alternatives to 
implement group communication in our prototype. Since the 
release of JXTA 1.0, the JXTA core protocol specification 
defines three kinds of core pipes: unicast, secure, and propagate 
pipes. We also considered non-core pipe services, namely 
bidirectional pipes and JXTA Sockets, which were available 
only since JXTA 2.0. 

We chose to use the propagate pipe service because, its 
one-to-many communication mode was the most apt for 
implementing group communication in a decentralized system. 
Despite the fact that reliability was not ensured, propagate pipe 
was actually the only practical solution, as all the other 
communication services were meant for point-to-point 
communication. Indeed, the use of any one-to-one service 
would have entailed the need to set up in the peer group a super 
peer that behaved very similar to a server (i.e., receive a 
message from a peer, then route it to all other known peers). 
This solution would have defeated any motivation for 
experimenting a P2P approach, as it would have been 
equivalent to using a traditional client/server solution, but on a 
P2P platform, and with much more complexity. Unfortunately, 
in our experience propagate pipes and discovery on rendezvous 
peers proved to be too much unreliable, unless all the peers 
were in the same subnet using multicast. Instead, when peers 
were dispersed over the Internet, results were discouraging, 
with high message drop rate and low resource discovery recall. 
Although we did not collect data from formal tests or 



benchmarks, other research studies have somewhat confirmed 
the problems of the JXTA messaging architecture in general 
[1],[11]. 

IV. REBUILDING OVER JABBER/XMPP 
JXTA was released in 2001. After having developed with it 

for over a year and a half, our feeling was that it had been 
released in a yet too-early stage, not mature enough, probably 
just on the heels of the growing popularity and hype of P2P. In 
addition, the JXTA  messaging service proved to be inadequate 
for developing a fully decentralized meeting system. 
Considered the several issues we encountered during the 
development of P2PConference, we decided to port the tool 
onto a different communication platform. Our choice fell onto 
Jabber/XMPP. 

The Jabber project started in 1999 to create an open 
alternative to closed instant messaging (IM) and presence 
services. In 2002 the Jabber Software Foundation contributed 
the Jabber core XML streaming protocols to the IETF as 
XMPP, eXtensible Messaging and Presence Protocol. XMPP 
was finally approved in early 2004 (RFC 3920–3923) [17] and 
now it is being used to build not only a large and open IM 
network, but also and mostly to develop a wide range of XML-
based applications, from network-management systems to 
online gaming networks, content syndication, and remote 
instrument monitoring [15]. 

Compared to JXTA, XMPP offered us three clear 
advantages. First, XMPP provides by design a reliable and, 
extensible architecture conceived for near real-time presence, 
messaging and structured data exchange. The second advantage 
is simplicity. XMPP has been conceived to delegate 
complexities to the servers as much as possible, so that 
developers can keep focused on the application logic, and the 
clients can stay lightweight and simple. Furthermore, the 
intrinsic extensibility of XMPP allows leveraging the existing 
services (e.g., multi-user chat) and also adding extra features 
(e.g. agenda, hand raise). Third, the IETF standardization of the 
core XMPP protocols has generated a plethora of high level 
XMPP APIs, available for a number of programming 
languages. XMPP programmers do not even need to know the 
protocol details, as all the raw XML exchanges are hidden by 
the use of any of these APIs.  

At a first glance, compared to our previous P2P solution, 
choosing XMPP might look somewhat contradictory. However 
its architecture is not purely client/server, but a hybrid, very 
similar to email. XMPP entities are identified by a unique 
Jabber ID, which is all that is needed in order to exchange 
messages. The XMPP network is formed by hundreds public 
servers, which are all interconnected to form the XMPP 
federation. Although running an XMPP server which is not part 
of the federation is still possible for a corporate LAN, from our 
perspective, using the XMPP federation was preferable because 
it allowed us to develop a client/server meeting system, without 
abandoning the goal of keeping at minimum the infrastructure 
costs (i.e., again no central server to install and administer, and 
no infrastructure costs, as in the case of P2P). 

We refactored P2PConference to make the tool independent 
of the underlying communication protocol. The implementation 
that used XMPP as network backend was called eConference 

(ver. 2.0) [7]. Unfortunately, co-browsing and file sharing 
features could not be easily migrated to work with XMPP, as 
they needed to be rewritten from scratch. These were not 
features related to communication though, and so we chose to 
run a pilot study without them anyway. 

V. ECONFERENCE AS A COLLABORATIVE PLATFORM 
When we ported our tool from JXTA to XMPP, we lost 

some features (namely file sharing and web-browser sharing), 
because they could not be easily adapted, but needed to be 
rewritten from scratch. From this idea we realized that we 
wished to avoid all the effort spent in adapting the tool to 
support another communication platform in the future. 
Furthermore, we conducted a pilot study at the University of 
Bari, from which we collected many useful requests of feature 
extensions. Nevertheless, it is overly challenging to foresee all 
the possible features needed to make a meeting system flexible 
enough to be apt for all contexts. These concerns led us to think 
about evolving eConference from a simple collaborative 
application to a collaborative platform. Our intention was to 
have a platform that offered as core functionality a reliable, 
extensible, and scalable messaging framework, on the top of 
which new collaborative features could be added as plugins. 
We also wanted to support multiple communication protocols 
through pluggable network backends, so as to have the 
possibility to add a new one at any time by writing only the 
specialized code for its integration. 

To support the composition of a larger system that is not 
pre-structured, or to extend it in ways that cannot be foreseen, 
an architecture that fully supports extensibility is needed. We 
decided to build another prototype exploiting the Eclipse Rich 
Client Platform (RCP) [14]. Since the release of version 3.0, 
Eclipse has evolved to become an open and fully extensible 
framework for developing rich client applications. While 
mostly known as a powerful Java IDE, now Eclipse is actually 
a universal plug-in platform for creating other platforms. 
Eclipse RCP is a pure-plugin system and, hence, fully 
extensible by architectural design. This new modular 
architecture looked very attractive to us because it promised to 
help us in developing with a focus on modular functionality 
and writing new plug-ins for missing functions. In traditional 
plugin architectures plugins are mere add-ons that extend the 
functionality of a host application, i.e., binary components not 
compiled into the application, but linked via well-defined 
interfaces and callbacks. Instead, in pure-plugin systems 
plugins become the building blocks of the architecture, as 
almost everything is a plugin and, consequently, the host 
application becomes a runtime engine with no inherent end-
user functionality. Instead, every application behavior is 
provided by a federation of plugins orchestrated by the engine 
[3]. 

The latest version of eConference is a rich client 
application, built upon Eclipse RCP. Besides all the benefits 
that come from using native widgets, our tool has inherited all 
the capabilities of the RCP, in terms of extensibility and 
classical concepts from the Eclipse world, like views (i.e., UI 
widgets) and perspectives (i.e., the particular arrangements of 
views in the application windows). The experience gained in 
developing the first two versions of our prototype has helped us 
in identifying the basic features that a communication protocol 



must provide to work with our tool. Thus, in our rich client 
application we have developed an abstract network layer that 
exposes the core communication features, which have to be 
mapped onto concrete network backends. If the mapping 
cannot be completed for a given protocol, it means that the 
protocol does not guarantee the minimal requirements needed. 
At the moment the only network backend supported is XMPP. 
The new eConference has been developed incrementally, using 
a story-driven agile process. In the following we describe some 
of the epics, i.e., the high-level, long stories that have then been 
split into smaller, testable user stories.  

1) Epic 1: A user can see presence status of contacts and 
send instant messages 

We started building a feature (i.e., a collection of plugins in 
Eclipse terminology) to provide instant messaging and 
presence awareness capabilities, which are both at the core of 
XMPP and, thus, the mapping was almost effortless.  

2) Epic 2: A user can create and join a chat room 
We extended the existing feature to implement multi-user 

chat for reliable group communication. Unlike presence and 
instant messaging, multi-user chat is not a core functionality of 
XMPP. Instead, it is available as a XMPP Extension Proposal 
(XEP). The Jabber Software Foundation develops extensions to 
XMPP through a standards process centered on XEPs. The 
Multi-User Chat XEP [16] is the protocol extension proposed 
for managing chat rooms. Though not in the final stage yet, this 
draft is already supported by all the hundreds public servers 
belonging to the XMPP federation. One limit we found with 
the multi-user chat extension was that it did not handle typing 
awareness. We tackled this problem leveraging the intrinsic 
extensibility of XMPP and creating a custom typing 
notification, sent whenever a participant in the room starts to 
type. 

3) Epic 3: A user can create and join an eConference 
Finally, leveraging the functionality already provided by the 
multi-user chat feature, we developed new plugins for each 
view needed, namely the agenda, edit panel and hand raising, 
so as to obtain the overall “eConference feature” (see Fig. 3). 
Indeed, rather than an application, eConference is now just a 
feature of our rich client application, with its own perspective. 
Similarly, when developing new features for web-browser and 
presentation sharing, we will build onto the existing features 
and plugins, and create new perspectives to optimize the 
arrangements of the UI views. To complete the implementation 
of the eConference feature, we also added support for one-to-
one private messaging and we implemented the item-based 
discussion threads, so that all the utterances related to an item 
are grouped together.  

VI. LESSONS LEARNED 
In this section we draw three lessons, which may be of help 

when making architectural decisions that have the potential to 
affect the evolution process. 

A. Stability as a key aspect 
Our experience with JXTA was not positive. Although it 

aimed at addressing a real problem (i.e., the fragmentation and 
redundancy of services offered by the plethora of existing P2P 

 
Figure 3. eConference perspective 

systems), JXTA failed at delivering a robust, general-purpose 
platform that can serve as the building blocks for P2P 
communication-intensive applications. Paradoxically, its 
messaging framework proved inappropriate for implementing 
group communication without using a client/server-like 
approach. Developing a spike would have probably shown that 
JXTA pipe services were not suitable for many-to-many 
communication in pure P2P approach, and that the platform 
API was too low level and complex. The spike, however, 
would have never spotted the platform API instability issues, 
which probably derived from being too low level. 

When building a new application from existing components 
you make implicit assumptions or have expectations, which 
often turn out to be wrong or just do not match the actual 
environments [10]. Stability is a key aspect of any API to 
guarantee the promised independence between API producers 
(i.e., software developers who write the API implementation) 
and API consumers (i.e., software developers who write code 
with method calls to the API). Changes in the API itself require 
changes in the API consumers’ code because this code use 
services provided by the API [6]. As API consumers, we did 
not expect the JXTA API to change often and we assumed the 
platform not to have backward compatibility issues as well.  

B.  Complexity on server side Vs. Extensibility on client side 
In our experience XMPP proved to be more stable, easy-to-

use, and reliable than JXTA. Our preference for XMPP over 
JXTA is not based on a preference for the client/server 
paradigm over P2P. On the whole, XMPP is a good choice for 
applications that need an extensible messaging framework. 
Indeed, its intrinsic extensibility has allowed us to easily 
expand the multi-user chat capability, adding the extra 
functionality we needed to build eConference.  

Obviously, also developing with XMPP was not without 
problems, which mostly stemmed from the limitations of the 
current multi-user chat extension proposal draft. A drawback of 
the latest implementation of our tool is related to the 
synchronization that occurs in case of unintentional 
disconnections of clients, or when there are latecomers. The 
multi-user chat extension ensures persistency, delegating to 
servers the tasks of history logging and dispatching. Thus, in 
both cases, all the events are sent back to clients in order. 



However, all the custom notifications we added, such as 
agenda items selection and edit panel updates, are logged in the 
history as if they were participants’ utterances. That is, during 
synchronization of clients, servers do not send the current 
content of the edit panel or agenda all at once, instead each and 
every change made is sent in chronological order. Furthermore, 
synchronization also includes useless notifications, like 
speaking requests and typing awareness. As a quick fix, on the 
client side we could prevent these events to be saved in the 
history, thus limiting the size of history to be stored and 
propagated. However, this solution, although easy to 
implement, would only alleviate the issue. Instead, according to 
the XMPP philosophy (i.e., to move the complexity away from 
the client), to completely overcome it, we have to tackle the 
synchronization problem from the server side. The goodness of 
an XMPP server is measured by the percentage of extensions 
supported. Hence, to accomplish a comprehensive solution we 
should either submit an extension proposal for the existing 
multi-user chat extension, or rather write on top of it a new 
extension proposal for a “structured multi-user chat” that 
handles history synchronization at lower level. Writing a new 
extension proposal is a neat solution, in line with the XMPP 
philosophy, although it has a drawback in terms of time 
required. To be accepted, any new extension proposal has to go 
through the XEP standards process, which involves discussion 
on mailing list, formal review, voting by the Jabber Council, 
and, eventually, the approval as protocol extension. Thus, in 
the worst case, a new extension proposal submitted can be 
rejected at the end of the process, otherwise, in the best case, it 
will take several months and revisions before the draft becomes 
mature enough for public servers to implement it. 

C. Bloated Rich Client Application 
Eclipse RCP is a platform for building other platforms. 

With a little more coding, this excellent framework offers to an 
application all the benefits seen in Eclipse (e.g., pure-plugin 
architecture, perspectives, update manager, help system). The 
only, but negligible, problem we found was the final size of the 
product itself, which gets bloated because of all the Eclipse 
RCP libraries to be included, even if not all of its services are 
utilized. The size of the product for our prototype is almost 9 
Megabytes, when the custom plugins developed, plus all the 
other third-party libraries we used, account for only 980 
Kilobytes. This limitation is already known [9] and the Eclipse 
community is now working to reduce the minimal set of 
libraries needed. 

VII. CONCLUSIONS & FUTURE WORK 
In this paper we have described the development of 

eConference, a text-based electronic meeting system. We have 
also drawn the lessons learned from the change of the network 
paradigm for the underlying communication framework used, 
from JXTA (P2P) to XMPP (client/server). Furthermore, using 
the insights gained from a pilot study, we have described the 
redevelopment of our prototype as a pure-plugin system, built 
on top of the Eclipse RCP.  

Recently, we have used our tool at the University of 
Victoria, Canada, to run a controlled experiment on the 
comparison between F2F and synchronous text-based 
interaction, in the context of distributed RE [5]. 

The next generation of eConference will be built on the 
basis of the Eclipse Communication Framework (ECF), a set of 
plugins for developing Eclipse-based applications that require 
to abstract from the underlying communication services [8]. 
We also aim to implement new features and plugins, such as 
freehand drawing, web-browsing and presentation sharing, so 
as to increase the support to distributed collaboration. This 
upcoming project has received the IBM Eclipse Innovation 
Award in the 2006 competition. 

ACKNOWLEDGMENT 
This work has been partially supported by the MiUR-Italy 

under grant 2006 “METAMORPHOS.” 

REFERENCES 
[1] G. Antoniu, P. Hatcher, M. Jan, and D.A. Noblet, “Performance 

Evaluation of JXTA Communication Layers”, 5th Int’l Workshop on 
Global and Peer-to-Peer Computing (GP2PC ’05), Cardiff, UK, May 
2005. 

[2] V. Basili, R. Tesoriero, P. Costa, M. Lindvall, I. Rus, F. Shull, and M. 
Zelkowitz, Building an Experience Base for Software Engineering: A 
Report on the First CeBASE eWorkshop, in Product Focused Software 
Process Improvement, PROFES 2001, LNCS, vol. 2188, Springer 
Berlin/Heidelberg, 2001.   

[3] D. Birsan, “On Plug-ins and Extensible Architectures”, Queue, ACM, 
vol. 3, n. 2, March 2005, pp. 40-46. 

[4] F. Calefato, F., Lanubile, and T. Mallardo, “Peer-to-Peer Remote 
Conferencing”, 3rd Int’l Workshop on Global Software Development 
(GSD ‘04), Edinburgh, Scotland, UK, IEE Publishing, May 2004, pp. 
34-38. 

[5] F. Calefato, D. Damian, and F. Lanubile, "An Empirical Investigation on 
Text-Based Communication in Distributed Requirements Engineering", 
Proc. 2nd Int’l Conf. Global Software Engineering (ICGSE ’07), 
Munich, Germany, 27-30 August, 2007. 

[6] C.R.B. de Souza, D. Redmiles, D. Millen, and J. Patterson, “Sometimes 
you need to see through walls: a field study of application programming 
interfaces”, Int’l Conf. on Computer Supported Cooperative Work 
(CSCW ’04), Chicago, Illinois, USA, November 6-10, 2004, pp. 63-71. 

[7] eConference Project Wiki, 
http://cdg.di.uniba.it/index.php?n=Research.EConference 

[8] Eclipse Communication Framework (ECF), http://www.eclipse.org/ecf 
[9] Eclipse RCP size bug, 

https://bugs.eclipse.org/bugs/show_bug.cgi?id=53338 
[10] D. Garlan, R. Allen, and J. Ockerbloom, “Architectural mismatch: why 

reuse is so hard”, Software, IEEE, vol. 12, n. 6, Nov. 1995, pp. 17-26. 
[11] E. Halepovic, and R. Deters, “The Cost of Using JXTA”, 3rd Int’l Conf. 

on Peer-to-Peer Computing (P2P ’03). Linköping, Sweden: IEEE 
Computer Society, Sept. 2003, pp. 160-167. 

[12] J.D. Herbsleb, A. Mockus, T.A. Finholt, and R.E. Grinter, “Distance, 
Dependencies, and Delay in a Global Collaboration”, Int’l Conf. on 
Computer-Supported Cooperative Work (CSCW ’00), Philadelphia, PA, 
USA, Dec. 16-20, 2000, pp.319-328. 

[13] JXTA dev portal, http://jxta.dev.java.org 
[14] J. McAffer, and J-M. Lemieux, Eclipse Rich Client Platform: Designing, 

Coding, and Packaging Java™ Applications, Addison Wesley 
Professional, 2005. 

[15] P. St. Andre, “Streaming XML with Jabber/XMPP”, Internet 
Computing, IEEE, vol. 9, n. 5, Sept.-Oct. 2005, pp. 82-89. 

[16] XMPP Multi-User Chat (MUC) XEP, http://www.jabber.org/xeps/xep-
0045.html 

[17] XMPP protocol specifications, 2004, http://www.xmpp.org/specs/ 
 




