
Embedding Social Networking Information into Jazz to
Foster Group Awareness within Distributed Teams

Fabio Calefato, Domenico Gendarmi, Filippo Lanubile
Dipartimento di Informatica
Università degli Studi di Bari

via E. Orabona, 4 – 70125 – Italy

{calefato, gendarmi, lanubile}@di.uniba.it

ABSTRACT
A Collaborative Development Environments (CDE) provides a
project workspace with a standardized toolset to help distributed
development teams cope with geographical distance. However,
there is a lack of support to reduce socio-cultural distance, which
poses practical barriers to the development of connections and
shared context/culture between team members.
The rise of the Social Web has created several opportunities to
publish personal information, often further composed through
Web mashups, which can be regarded as a valuable data source in
order to establish a shared context among remote developers, with
little or no chances to meet.

In this paper we present our preliminary work that aims to provide
distributed software teams with overall, contextual awareness
aggregated in one place. Using the IBM Jazz as CDE, which
already provides both presence and workspace awareness, we
leveraged the FriendFeed aggregator service to embed personal
information about distributed co-workers, collected from social
networks. Disseminating additional group awareness information
to developers, who have little or no chances to meet, can help to
speed up the establishment of organizational values, attitudes, and
trust-based inter-personal connections.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments –
Integrated environments, Interactive environments, Programmer
workbench.

General Terms
Management, Human Factors, Design.

Keywords
Social Web, Web 2.0, Mashup, Jazz, Eclipse, Collaborative
Development Environment, CDE, Group awareness.

1. INTRODUCTION
In distributed settings, due to distance, software teams often rely
on Collaborative Development Environment (CDEs), such as

SourceForge1, GoogleCode2, Github3, and Assembla4

 [3]

, which are
an integrated and flexible set of tools that help distributed teams
control their software development process. Yet, despite their
ability to cope with geographical distance, CDEs provide little
support to reduce socio-cultural distance, which poses practical
barriers to the development of connections (i.e., common ground,
mutual confidence, trust) and shared context/culture (i.e.,
assumptions, beliefs, attitudes, values) within distributed teams,
with a potential severe impact on project management
effectiveness. The idea of applying social software to help
distributed teams deal with socio-cultural distance is rather recent.
The rise of the Social Web, also known as Web 2.0 , created
lots of sources for personal, user-generated content, which is often
further composed through Web mashups. In [1], we argued that
embedding into CDEs information collected from social websites
(e.g., Twitter5, Facebook6, Last.fm7

Ko et al.

) might help to speed up the
establishment of shared context and culture, as well as personal
relationships between distant team members, with little or no
chances to meet.

 [8] conducted a study to understand the information
needs in software developments teams, showing that the most
frequently sought information included awareness about tasks,
artifacts, and co-workers. However, recent research studies have
also shown that tool support for distributed software development
teams are still inadequate in enhancing distributed awareness
because most tools are designed to answer a specific kind of
“awareness questions” in isolation [11]. For instance,
communication applications, such as IM and VoIP tools, provide
presence awareness to help coworkers minimize interruptions and
disturbances when engaging in collaborative processes. Instead,
tools such as Palantìr [11], Hipikat [4], and Mylyn [7] provide
developers with workspace awareness, which help to identify
other developers, artifacts, and tasks that are related to the
artifact/task at hand. IBM Jazz is one of the most recent and full-
featured CDE, which provides both presence and workspace
awareness in one place [5].

1 http://sourceforge.net/
2 http://code.google.com
3 http://github.com/
4 http://www.assembla.com/
5 http://twitter.com/
6 http://www.facebook.com/
7 http://www.lastfm.it/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SoSEA’09, August 24, 2009, Amsterdam, The Netherlands.
Copyright 2009 ACM 1-58113-000-0/00/0004…$5.00.

However, neither Jazz supplies informal, personal information on
coworkers in order to provide them with group awareness, that is,
the consciousness of individual collaborators in a group with
regards to affective behaviors, collective orientation, particularism
or diffuseness [13], which is extremely beneficial to maintain a
sense of teamness between geographically distributed software
teams [10].

In this paper we present our initial work that aims to provide
distributed software teams with overall, contextual awareness (i.e.,
presence, workspace, and group awareness) aggregated in one
place. Using the Jazz CDE, which already provides both presence
and workspace awareness, we leveraged the FriendFeed
aggregator service to embed personal information from social
networks about distributed co-workers, who have little or no
chances to meet, in order to provide group awareness and, at the
same time, speed up the establishment of organizational values,
attitudes, and trust-based personal connections between them.

The remainder of this paper is organized as follows. In Section 2
we present an overview on CDEs and Jazz, in particular. In
Section 3 we first discuss the rise of Social Web applications in
general, and then we present FriendFeed as a particular example
of Web Mashup. Our Jazz extension is discussed in detail in
Section 4. Finally, in Section 5 we conclude.

2. COLLABORATIVE DEVELOPMENT
ENVIRONMENTS
In software development, control is the process of adhering to
goals, policies, standards, and quality levels, set either formally
(e.g., formal meetings, plans, explicit guidelines) or informally
(e.g., team culture, peer pressure). Because in distributed settings
it is not possible to control units by walking, organizations had to
fall back to using collaborative tools to control the software
development process from a distance. Collaborative Development
Environments (CDEs), such as SourceForge, Gforge, Google
Code, are the most used and full-featured process-aware tools to
support distributed teams.

CDEs were envisioned by Booch & Brown, who first
acknowledged the need for ‘frictionless surface’ in development
environments [2], motivated by the observation that much of the
developers’ effort is wasted in switching back and forth between
different applications to communicate and work together.
According to this vision, collaborative features should be
available as components that extend core applications (e.g., the
IDE), thus increasing the users’ comfort and productivity.
Therefore, CDEs support developers by incorporating the
standard toolset needed (e.g., compiler, debugger, version control
system, bug tracker) within a single project workspace, reducing
the effort of running multiple different applications to
communicate and work together.

Earliest CDE were developed within open source software (OSS)
projects because OSS projects, from the beginning, have been
composed of dispersed individuals. Today a number of CDEs are
also available as commercial products.

2.1 IBM Jazz
Jazz [5] is one of the most noticeable commercial CDE because it
can be customized to support any process. Besides, Jazz is an
extensible platform, which leverages the Eclipse’s notion of
plugins to build CDE products. The present version has a wide-
ranging scope, but in the former version of Jazz the goal was to
integrate synchronous communication and reciprocal awareness of
coding tasks into the Eclipse IDE, following Booch & Brown’s
vision.

Jazz is an extensible team collaboration platform based on a
client-server architecture, which integrates many different
technologies in a single environment. The Jazz server hosts a set
of services (e.g., generate reports, resolve work items from the
Web) and houses data in its repository (e.g., configurations,
source code). Remote clients communicate with the Jazz server
over the network, using SOAP/XML over HTTP (Figure 1). The
full-featured Jazz client is Rational Team Concert, an extension of
the Eclipse IDE, packed with all the plugins necessary to the Jazz
development platform. It provides presence awareness, thanks to
the integration with Lotus Sametime, and workspace awareness,
by generating an RSS feed of all project-related events occurring
the workspace.

The essential components of Jazz are the Repository and Team
Process, which represent the platform kernel and are developed by
the Jazz Project Member (Figure 2). Other members of the Jazz
community develop additional components to add new
capabilities to Jazz, such as source control and reporting. While
the Team Process component is meant to make Jazz a
customizable, process-aware platform, Repository allows to store
tool-specific information in a central place where it can be made
available to all other components in all client and server
configurations. Thus, the Repository plays a key role in Jazz
extensibility.

3. SOCIAL WEB & MASHUPS
Recently, the rise of the Social Web [3] , created new incentives
and motivations for publishing personal information on the Web.
Nowadays, plenty of user-generated content is public available.
Applications like Wikipedia8, Flickr9, Delicious10,
LibraryThing11, for example, provide each day new wiki articles,
photos, bookmarks and book reviews, as well as new metadata,
which are directly added by users.

Figure 1. Jazz Client-Server Communication [6]

8 http://www.wikipedia.org/
9 http://www.flickr.com/
10 http://delicious.com/
11 http://www.librarything.com/

Figure 2. Components of Jazz Platform [6]

However, these forms of collaborative contributions are restricted
to one single application and current Social Web applications are
isolated from one another, like ‘walled gardens’. The main reason
for this lack of interoperation is that for the most part in the Social
Web, applications’ owners are quite reluctant to provide
programmatic access to user generated content, which is hosted
within their web sites.

In such a context, Web mashups have emerged providing a
dynamic approach to compose content and functionalities
originating from disparate web sources [14]. Among the different
classes of mashup available on the Web, we focused on News
Mashups [9] also known as Syndication Feed Mashups since they
use syndication technologies like RSS and Atom to aggregate
news related to various topics and create personalized feed views.
In particular, we envisioned the opportunity to aggregate feeds
about personal information originating from social networking
sites in order to foster group awareness within distributed teams.

3.1 FriendFeed, a Social Information
Aggregator
FriendFeed12 is a real-time feed aggregator that consolidates the
updates from a number of social networking websites (e.g.,
Delicious, YouTube13, Last.fm, LinkedIn14, Facebook), as well as
any other custom website providing an RSS/Atom feed. Thus,
FriendFeed users can use this stream of information to create
customized feeds to share (and comment) with friends. The main
reason of FriendFeed success is that it provides the facility to
track users’ activities (such as posting on blogs, Twitter and
Flickr, or listening to music on Pandora15

12 http://friendfeed.com/

) across a broad range of
different social networks, whereas other services exclusively

13 http://www.youtube.com/
14 http://www.linkedin.com/
15 http://www.pandora.com/

facilitate tracking of their own members' activities on their
particular social service.

What looked attractive to us about exploiting the FriendFeed
service into Jazz is that: (1) a free API is available for leveraging
the service output into third-party applications; (2) private groups
can be defined so that updates from members are bound within
group and not visible to users on the outside; (3) users can decide
what is relevant or appropriate to stream and share, reducing
information privacy and overloading concerns.

Members of the same Jazz project-area can create a FriendFeed
private groups where they can choose which feeds they want to
share and who can see the shared feeds. They can also start a
conversation around shared items, or just show that they like a
feed someone else has shared. By aggregating in the same place
different feeds from social networking services used on a daily
basis by the project members, we can thus foster the discovering
and discussion of personal information regarding people within
the project-area, speeding up the development of connections and
shared context between team members.

4. THE JAZZ EXTENSION
The Jazz client extension was coded using a Java wrapper of the
FriendFeed API. Unfortunately, the API itself does not allow
doing as much as desired. For instance, groups cannot be created
or managed using the API, which basically allows getting group
description and members, reading the feed, and posting messages.
In the remainder of this section, we briefly illustrate how the
extension works in a simple scenario.

Using the FriendFeed web interface, the project-lead of a Jazz
project-area creates a private group for the project. In order to
avoid the friction of switching to the web browser and then back
to the Jazz client, a browser window can be opened in one of the
workspace views to complete group creation (see Figure 3a).

Other developers needs to be invited to join the group, using
either their FriendFeed usernames, in case they are already

registered, or just emails (see Figure 3b). Because the group is
private, developers will have to enter their FriendFeed credentials
to subscribe the aggregated feed and post contribution. Using the
Eclipse Modeling Framework, we extended the project-area
model in order to store FriendFeed credentials about both users
and groups into the Jazz server repository. This way, even when
changing the machine where the Jazz client is run (e.g., in case of
switching from the office desktop to the laptop for a business
travel), the group feed is available as long as the extension is
installed on the client.

Developers can be invited to the group as regular members or
admins: Only in the latter case they are allowed to add a service to
the aggregated feed. As a group admin, each developer is allowed
to specify what personal information collected from external
social web sites can be streamed to the group, without violating
his/her privacy. For instance one developer can choose to stream
what he likes on Last.fm and Pandora, whereas another one can
share her bookmarks saved in Delicious and the book reviews she
posted on LibraryThing.

Once the group is created, the project-lead registers it with the
project area in Jazz by entering the URL of the aggregated feed.

Upon registering the group, the associated feed appears in the
Team Artifact view of Jazz, under the Feed folder (see Figure 4a),
along with the default feeds that provide workspace awareness by
informing developers about development-related events (e.g.,
commits, build failures) or any other change occurring in the
workspace (e.g., changes to the milestones release date). Hence,
the aggregated feed of personal information is visualized using the
same internal feed reader provided by Jazz (see Figure 4b).
Because source services can be added to the aggregated stream by
each developer who subscribed the FriendFeed group as admin,
the larger the development team, the higher the risk of
information overload is. Hence, we extended the feed reader to
give each developer the opportunity to filter the updates from
undesired sources. For instance, one can choose to filter out the
updates from Facebook, YouTube and Flickr, while displaying all
the others available in the aggregated feed (see Figure 4c).

Finally, an extra view has been made available in the workspace
to let developers post message to the FriendFeed group directly
from the Jazz client (see Figure 5a). All subscribers to the group
are then able to view new messages as feeds, through both the
FriendFeed web-based interface and the feed reader included
within the Jazz client (Figure 5b).

a)a)

b)b)

a)a)

b)b)

Figure 3. FriendFeed group creation a) Friend Invitation to the group b)

a)a)

b)b)

c)c)

a)a)

b)b)

c)c)

Figure 4. Name of the feed for the created group a) Feed view on Jazz b) Filtering options c)

a)a)

b)b)

Figure 5. Posting a message to the group a) View of the updated feed b)

5. CONCLUSIONS & FUTURE WORK
Jazz is a Collaborative Development Environment that provides
developers with both presence and workspace awareness. In this
paper we have presented an extension of the Jazz platform, which
leverages the feed aggregation service of FriendFeed to embed
social information collected from social networks into the Jazz
client and provide developers with group awareness as well. We
argue that disseminating additional group awareness information
to developers working in dispersed teams can help to speed up the
establishment of organizational values, attitudes, and trust-based
inter-personal connections, thus facilitating the overall distributed
software development process.

While current work is focusing on the enrichment of the Jazz
client, as future work we plan to extend Jazz also on the server
side by augmenting the Jazz user profile with new professional
information. Through the mashup of information collected from
both business- and development-oriented social websites (e.g.,
LinkedIn and Ohloh), we intend to give to Jazz users the
opportunity to customize their profile by including information
about professional connections and expertise.

Extending Jazz server-side model allows to leverage collected
information in the whole profile rather than within a specific
project area, thus enabling information sharing within different
teams inside Jazz. Moreover, we plan to develop the server-side
mashup as a web service that expose personal information as RDF
Linked Data in order to enable Jazz users exporting professional
profiles and reusing them in third-party relevant applications.

6. ACKNOWLEDGMENTS
Our thanks to Davide Fucci for implementing the initial prototype
of our Jazz client extension.

7. REFERENCES
[1] Abbattista, F., Calefato, F., Gendarmi D., and Lanubile, F.

Incorporating Social Software into Agile Distributed
Development Environments. Proc. 1st ASE Workshop on
Social Sofware Engineering and Applications (SOSEA
2008), L'Aquila, Italy, 15 September 2008.

[2] Booch, G. and Brown, A.W., Collaborative Development
Environments, Advances in Computers 59, 2003.

[3] Chi, E.H., The Social Web: Research and Opportunities,
IEEE Computer , vol.41, no.9, pp.88-91, 2008.

[4] Cubranic, D., Murphy, G.C., Singer, J., and Booth, K.S.
Hipikat: a project memory for software development. IEEE
Transactions on Software Engineering, 31(6):446-465, 2005.

[5] Frost, R., (2007). Jazz and the Eclipse Way of Collaboration.
IEEE Software, 24(6), pp. 114-117.

[6] Jazz Platform Technical Overview,
https://jazz.net/learn/PrintableLearnItem.jsp?href=content/do
cs/platform-overview/index.html

[7] Kersten, M. Focusing knowledge work with task context.
PhD Thesis, University of British Columbia, 2007.

[8] Ko, A.J., DeLine, R., and Venolia, G. Information Needs in
Collocated Software Development Teams. Proc. 29th
international conference on Software Engineering,
Minneapolis, 2007.

[9] Merrill, D. 2006. Mashups: The new breed of Web app. An
introduction to mashups. IBM developerWorks.
http://www.ibm.com/developerworks/xml/library/x-
mashups.html

[10] Omoronyia, I. Sharing awareness during distributed
collaborative software development. PhD Thesis, University
of Strathclyde, November 2008.

[11] Sarma, A., Noroozi, Z., and Hoek, A. Palantír: Raising
Awareness among Configuration Management Workspaces.
Proc. 25th Int’l Conf. on Software Eng. Portland, 2003.

[12] Sillito, J., Murphy G.C., and De Volder, K. Asking and
Answering Questions during a Programming Change Task.
IEEE Trans. on Software Engineering, 34(4):434-451, 2008.

[13] Totter, A., Gross T., and Stary, C. Functional versus
Conscious Awareness in CSCW-Systems. XV. IFIP World
Computer Congress. Telecooperation - The Global Office,
Teleworking and Communication Tools-Vienna, 1998.

[14] Yu, J., Benatallah, B., Casati, F., and Daniel, F. 2008.
Understanding Mashup Development. IEEE Internet
Computing 12, 5, 44-52.

	1. INTRODUCTION
	2. COLLABORATIVE DEVELOPMENT ENVIRONMENTS
	2.1 IBM Jazz

	3. SOCIAL WEB & MASHUPS
	3.1 FriendFeed, a Social Information Aggregator

	4. THE JAZZ EXTENSION
	5. CONCLUSIONS & FUTURE WORK
	6. ACKNOWLEDGMENTS
	7. REFERENCES

