

Adding Social Awareness to Jazz
for Reducing Socio-Cultural Distance

between Distributed Development Teams

Fabio Calefato, Domenico Gendarmi, Filippo Lanubile
Dipartimento di Informatica, Università degli Studi di Bari, via E. Orabona 4

70125 Bari, Italy
{calefato, gendarmi, lanubile}@di.uniba.it

Abstract. A Collaborative Development Environment (CDE) provides a shared
workspace with a standardized toolset that helps distributed development teams
cope with geographical distance. However, CDEs lack any support to reduce
socio-cultural distance, which poses practical barriers to the development of
connections and shared culture in distributed settings. The recent rise of the
Social Web created several opportunities to publish personal information and
develop connections from a distance. We argue that disseminating additional
social awareness information to developers, who have little or no chances to
meet, can help to speed up the establishment of organizational values, attitudes,
and trust-based inter-personal connections. In this paper, building on existing
literature, we first propose our definitions of three distinct types of awareness.
Then, by means of scenarios, we show how our extension of the Jazz, a CDE
that already provides presence and workspace awareness, adds social awareness
information about coworkers, i.e., interests, emotional state, in order to reduce
socio-cultural distance, and improve team openness and well being in
distributed settings.

Keywords: Group Awareness, Social Awareness, Social Web, Web 2.0,
Mashup, Jazz, Eclipse, Collaborative Development Environment, CDE.

1 Introduction

In distributed settings, due to distance, software teams often rely on Collaborative
Development Environment (CDEs), such as SourceForge1, GoogleCode2, Github3,
and Assembla4, which are an integrated and flexible set of tools (e.g., code compiler
and debugger, version control, issue tracking) that help distributed teams control their
software development process. Yet, despite their ability to cope with geographical
distance, CDEs provide little support to reduce socio-cultural distance. In fact,
differences in culture, which can be intuitively epitomized as a fuzzy set of attitudes,

1 http://sourceforge.net/
2 http://code.google.com
3 http://github.com/
4 http://www.assembla.com/

beliefs, behavioral norms, basic assumptions and values that are shared by a group of
people [21], pose practical barriers to the development of relationships and
connections (i.e., common ground, mutual confidence, trust) within distributed teams,
with a potential severe impact on project management effectiveness.

The idea of applying social software to help distributed teams deal with socio-
cultural distance is rather recent. The rise of the Social Web, also known as Web 2.0
[5], created lots of sources for personal, user-generated content, and opportunities to
develop connections from a distance. In [1] we presented our initial prototype, which
embeds information collected from social websites (e.g., Twitter5, Facebook6,
Last.fm7) into the IBM Jazz CDE. We used the Jazz CDE, because it already provides
both presence and workspace awareness, and leveraged the FriendFeed aggregator
service to embed personal information about distributed co-workers, collected from
social networks. Here, building on relevant literature, we first propose our own
defintions of the existing types of awareness. Then, after showing the features or our
Jazz extension, we present some key usage scenarios to illustrate how providing
distributed software teams with overall group awareness (i.e., presence, workspace,
and social awareness) aggregated in one place can help to speed up the establishment
of organizational values, attitudes, and trust-based personal connections between
distant team members, with little or no chances to meet.

The remainder of this paper is organized as follows. In Section 2, we present an
overview on CDEs and Jazz, in particular. In Section 3, building on relevant previous
works, we propose our definitions of different awareness types. In Section 4 we first
discuss the rise of Social Web applications in general, and then we present
FriendFeed as a particular example of Web Mashup. Our Jazz extension is discussed
in detail in Section 5, whereas in Section 6 we illustrate the usage scenarios. Finally,
we conclude in Section 7.

2 Collaborative Development Environments

In software development, control is the process of adhering to goals, policies,
standards, and quality levels, set either formally (e.g., formal meetings, plans, explicit
guidelines) or informally (e.g., team culture, peer pressure). Because in distributed
settings it is not possible to control units by walking, organizations had to fall back to
using collaborative tools to control the software development process from a distance.
Collaborative Development Environments (CDEs), such as SourceForge, Gforge,
Google Code, are the most used and full-featured process-aware tools to support
distributed teams.

CDEs were envisioned by Booch & Brown, who first acknowledged the need for
‘frictionless surface’ in development environments [4], motivated by the observation
that much of the developers’ effort is wasted in switching back and forth between
different applications to communicate and work together. According to this vision,
collaborative features should be available as components that extend core applications

5 http://twitter.com/
6 http://www.facebook.com/
7 http://www.lastfm.it/

(e.g., the IDE), thus increasing the users’ comfort and productivity. Therefore, CDEs
support developers by incorporating the standard toolset needed (e.g., compiler,
debugger, version control system, bug tracker) within a single project workspace,
reducing the effort of running multiple different applications to communicate and
work together.

Earliest CDE were developed within open source software (OSS) projects because
OSS projects, from the beginning, have been composed of dispersed individuals.
Today a number of CDEs are also available as commercial products.

2.1 IBM Jazz CDE

Jazz [8] is one of the most noticeable commercial CDE because it can be customized
to support any process. Besides, Jazz is an extensible platform, which leverages the
Eclipse’s notion of plugins to build CDE products. The present version has a wide-
ranging scope, but in the former version of Jazz the goal was to integrate synchronous
communication and reciprocal awareness of coding tasks into the Eclipse IDE,
following Booch & Brown’s vision.

Jazz is an extensible team collaboration platform based on a client-server
architecture, which integrates many different technologies in a single environment.
The Jazz server hosts a set of services (e.g., generate reports, resolve work items from
the Web) and houses data in its repository (e.g., configurations, source code). Remote
clients communicate with the Jazz server over the network, using SOAP/XML over
HTTP (Fig. 1). The full-featured Jazz client is Rational Team Concert, an extension
of the Eclipse IDE, packed with all the plugins necessary to the Jazz development
platform. It provides presence awareness, thanks to the integration with Lotus
Sametime, and workspace awareness, by generating an RSS feed of all project-related
events occurring the workspace.

The essential components of Jazz are the Repository and Team Process, which
represent the platform kernel and are developed by the Jazz Project Member (Fig. 2).
Other members of the Jazz community develop additional components to add new
capabilities to Jazz, such as source control and reporting. While the Team Process
component is meant to make Jazz a customizable, process-aware platform, Repository
allows to store tool-specific information in a central place where it can be made
available to all other components in all client and server configurations. Thus, the
Repository plays a key role in Jazz extensibility.

Fig. 1. Jazz Client-Server Communication [11]

Fig. 2. Components of the Jazz Platform [11]

3 Types of Awareness: Definitions

Dourish and Bellotti were among the first to define the concept of awareness as an
understanding of the activities of others, which provides a context for one’s activity,
so that individual contributions are relevant to the group’s activity as a whole [7]. The
concept of awareness is strictly connected to the activities of displaying and
monitoring of information [16]. When performing a shared, collaborative activity,
displaying refers to the notification of one’s information (e.g., presence and actions,
typically) that can be relevant to others involved. Monitoring is the complement of
information displaying, as it refers to the peripheral observation of others in an
unobtrusive way, in order to avoid interruptions.

Being a complex, information-intensive, and highly collaborative activity, software
development can greatly benefit from awareness, especially in distributed settings,
where teammates have to collaborate from a distance. Ko et al. [13] conducted a study
to understand the information needs in software developments teams, showing that
the most frequently sought information included awareness about tasks, artifacts, and
co-workers. We have identified three major types of awareness: presence, workspace,
and social.

Presence awareness is the awareness of what distant colleagues are doing, their
availability for interaction, and how they prefer to be reached, helping coworkers to
minimize interruptions and disturbances when engaging in collaborative processes
[9]. Presence awareness has almost become synonymous with IM and VoIP because
such tools represent the preferred, lightweight means to broadcast information or
questions, as well as ascertain and negotiate availability to accommodate
opportunistic interaction between co-workers.

Workspace awareness means knowing project teams and their internal structure, as
well as team members and artifacts. Tools such as Palantìr [18], Hipikat [6], and
Mylyn [12] provide developers with workspace awareness information that helps

developers to identify other teammates, artifacts, and tasks that are related to the
artifact/task at hand. Workspace awareness is particularly relevant to project
managers and team leads as it helps to track the state of a project.

Social awareness is the awareness about interests, opinions, and emotional state of
members of a group, which can be extremely beneficial to increase the sense of
“teamness” in distributed software settings [16]. Social awareness has been
acknowledged only recently, and unlike presence and workspace awareness, it cannot
be directly considered contextual to a software development project. Nonetheless,
since it helps to develop an organizational culture and to consolidate connections and
trust-based relationships between distant collaborators, social awareness contributes
to project success by improving team’s well being and social health [18]. There are
very few software development-oriented tools that support social awareness. One of
the most noticeable is Github8, a software repository that combines standard features
of social networking sites (e.g., following or messaging developers, watch projects’
activity timeline through feeds) with Git, a distributed source-control system.
Codebook [3], instead, is a Microsoft prototype that aims at developing a social
networking services over code, in which people can also be friends with the artifacts
they share.

Because presence, workspace, and social awareness provide an answer to specific
requests of information, if aggregated in one place they can help teams maintain an
overall group awareness. A recent research study by Omoronya has shown that tool
support for distributed software development teams are still inadequate in enhancing
distributed awareness because most tools are designed to support a specific kind of
awareness in isolation [16]. To date no tool has provided distributed development
teams with support to group awareness. IBM Jazz, discussed in the next section, is
one of the most recent and full-featured Collaborative Development Environments,
which provides presence and workspace awareness in one place, but lacks any support
to social awareness.

4 Social Web

Recently, the rise of the Social Web [5], created new incentives and motivations for
publishing personal information on the Web. Nowadays, plenty of user-generated
content is public available. Applications like Wikipedia9, Flickr10, Delicious11,
LibraryThing12, for example, provide each day new wiki articles, photos, bookmarks
and book reviews, as well as new metadata, which are directly added by users.

However, these forms of collaborative contributions are restricted to one single
application and current Social Web applications are isolated from one another, like
‘walled gardens’. The main reason for this lack of interoperation is that for the most

8 http://github.com/
9 http://www.wikipedia.org/
10 http://www.flickr.com/
11 http://delicious.com/
12 http://www.librarything.com/

part in the Social Web, applications’ owners are quite reluctant to provide
programmatic access to user generated content, which is hosted within their web sites.

In such a context, Web mashups have emerged providing a dynamic approach to
compose content and functionalities originating from disparate web sources [23].
Among the different classes of mashup available on the Web, we focused on News
Mashups [15] also known as Syndication Feed Mashups since they use syndication
technologies like RSS and Atom to aggregate news related to various topics and
create personalized feed views. In particular, we envisioned the opportunity to
aggregate feeds about personal information originating from social networking sites
in order to foster group awareness within distributed teams.

4.1 FriendFeed, a Social Information Aggregator

FriendFeed13 is a real-time feed aggregator that consolidates the updates from a
number of social networking websites (e.g., Delicious, YouTube14, Last.fm,
LinkedIn15, Facebook), as well as any other custom website providing an RSS/Atom
feed. Thus, FriendFeed users can use this stream of information to create customized
feeds to share (and comment) with friends. The main reason of FriendFeed success is
that it provides the facility to track users’ activities (such as posting on blogs, Twitter
and Flickr, or listening to music on Pandora16) across a broad range of different social
networks, whereas other services exclusively facilitate tracking of their own members'
activities on their particular social service.

What looked attractive to us about exploiting the FriendFeed service into Jazz is
that: (1) a free API is available for leveraging the service output into third-party
applications; (2) private groups can be defined so that updates from members are
bound within group and not visible to users on the outside; (3) users can decide what
is relevant or appropriate to stream and share, reducing information privacy and
overloading concerns.

Members of the same Jazz project-area can create a FriendFeed private groups
where they can choose which feeds they want to share and who can see the shared
feeds. They can also start a conversation around shared items, or just show that they
like a feed someone else has shared. By aggregating in the same place different feeds
from social networking services used on a daily basis by the project members, we can
thus foster the discovering and discussion of personal information regarding people
within the project-area, speeding up the development of connections and shared
context between team members.

13 http://friendfeed.com/
14 http://www.youtube.com/
15 http://www.linkedin.com/
16 http://www.pandora.com/

5 The Jazz Client Extension

The Jazz client extension was coded using a Java wrapper of the FriendFeed API.
Unfortunately, the API itself does not allow doing as much as desired. For instance,
groups cannot be created or managed using the API, which basically allows getting
group description and members, reading the feed, and posting messages. In the
remainder of this section, we briefly illustrate how the extension works in a simple
scenario.

Using the FriendFeed web interface, the project-lead of a Jazz project-area creates
a private group for the project. In order to avoid the friction of switching to the web
browser and then back to the Jazz client, a browser window can be opened in one of
the workspace views to complete group creation (see Fig. 3a).

Other developers needs to be invited to join the group, using either their
FriendFeed usernames, in case they are already registered, or just emails (see Fig. 3b).
Because the group is private, developers will have to enter their FriendFeed
credentials to subscribe the aggregated feed and post contribution. Using the Eclipse
Modeling Framework, we extended the project-area model in order to store
FriendFeed credentials about both users and groups into the Jazz server repository.
This way, even when changing the machine where the Jazz client is run (e.g., in case
of switching from the office desktop to the laptop for a business travel), the group
feed is available as long as the extension is installed on the client.

a)a)

b)b)

a)a)

b)b)

Fig. 3. FriendFeed group creation a) Friend Invitation to the group b)

Developers can be invited to the group as regular members or admins: Only in the

latter case they are allowed to add a service to the aggregated feed. As a group admin,
each developer is allowed to specify what personal information collected from

external social web sites can be streamed to the group, without violating his/her
privacy. For instance one developer can choose to stream what he likes on Last.fm
and Pandora, whereas another one can share her bookmarks saved in Delicious and
the book reviews she posted on LibraryThing.

Once the group is created, the project-lead can register it with the project area in
Jazz by entering the URL of the aggregated feed. Upon registering the group, the
associated feed appears in the Team Artifact view of Jazz, under the Feed folder (see
Fig. 4a), along with the default feeds that provide workspace awareness by informing
developers about development-related events (e.g., commits, build failures) or any
other change occurring in the workspace (e.g., changes to the milestones release date).
Hence, the aggregated feed of personal information is visualized using the same
internal feed reader provided by Jazz (see Fig. 4b). Because source services can be
added to the aggregated stream by each developer who subscribed the FriendFeed
group as admin, the larger the development team, the higher the risk of information
overload is. Hence, we extended the feed reader to give each developer the
opportunity to filter the updates from undesired sources. For instance, one can choose
to filter out the updates from Facebook, YouTube and Flickr, while displaying all the
others available in the aggregated feed (see Fig. 4c).

Finally, an extra view has been made available in the workspace to let developers
post message to the FriendFeed group directly from the Jazz client (see Fig. 5a). All
subscribers to the group are then able to view new messages as feeds, through both
the FriendFeed web-based interface and the feed reader included within the Jazz
client (Fig. 5b).

a)a)

b)b)

c)c)

a)a)

b)b)

c)c)

Fig. 4. Name of the feed for the created group a) Feed view on Jazz b) Filtering options c)

a)a)

b)b)

Fig. 5. Posting a message to the group a) View of the updated feed b)

6 Usage Scenarios

Here we describe some key scenarios to clarify the potential benefits to teams
adopting our Jazz client extension.

Facilitate interpersonal connections. Ian has just joined the Irish team of the
ALPHA project, which is distributed over multiple sites. Ian’s first task is to develop
a plugin for Eclipse. Looking at task assignments in the Jazz workspace, he is not able
to determine what teammates, if any, have previous experience with the development
of plugins.

Adding our FriendFeed extension to Jazz can increase the transparency of group
structure and competences, and facilitate the establishment of interpersonal
connections. Looking at the project-related FriendFeed stream, Ian decides to filter
out any content other than the bookmarks saved in Delicious and the books reviewed
on LibraryThing. He finds that Brian has shared several references to articles and has
reviewed a couple of books about developing plugins in Eclipse. Thus, Ian, on the one
hand, can go through the references he found; on the other hand, he can get in touch
with Brian, using one of the communication media available to project members, or
he can take advantage of informal, water-cooler conversation, in case they are
collocated.

Improve team openness. The BETA project is distributed over two sites, in
Ireland and in India. In such settings, one of the solutions that has proved effective to
reduce cultural distance and improve team openness is “team buddies”, which
contemplates that each developer from the Indian site is “buddyed up” with one from
the Irish site, providing one-on-one coaching [10]. Thus, Rajiv is buddyed up with
Ian. By getting to know each other better, both Rajiv and Ian will broaden their mind,
making themselves more open to cultural difference, as well as more indulgent to

language issues and prone to think that the others are not going to act, feel, or think
the same way.

The use of our FriendFeed extension can help to increase the effectiveness of team
buddies. First, our extension gives both Rajiv and Ian insights about interests,
opinions, etc. of each other: for instance, books that one has been reading to get
started with a new technology they are going to use in the project, or the pictures from
a conference that the other has attended. Besides, our extension can be helpful to learn
about the daily rhythm and habits of work. For example, Rajiv may learn that when
Ian is contributing something to the FriendFeed stream, is a good time to contact him
for a help request with lower chances to interrupt him. Finally, our extension can also
help to decrease the number of cultural awareness workshops, which are often used as
an effective, but expensive, means to reduce cultural distance in distributed projects
[2].

Build a socially open workspace. The GAMMA project is a distributed software
development project that spans over multiple sites, including one in India and another
one in the US. Indian and North American are quite different cultures. Unlike the
latter, Indian is a collectivist, strictly hierarchical culture in which for younger
developers it is considered unfair to say no to or disagree with senior developers, team
leads, and upper management [17,22]. Our Jazz extension can help to lose strict
hierarchical relationships and grant a more equal participation to unhindered
discussions.

In collocated projects, equality of participation and unhindered communication is
encouraged by adopting a physically open environment, with no cubicles or separated
offices for managers and team leads [14]. Our Jazz extension can help to break “sir”
relationships, by fostering the development of connections established on a more
personal basis, and consequently build a socially open workplace where, despite
seniority, it is easier for younger developers to deal with senior team leads and
participate in discussion with lower peer pressure.

7 Conclusions & Future Work

Jazz is a Collaborative Development Environment that provides developers with both
presence and workspace awareness. In this paper we have presented an extension of
the Jazz platform, which leverages the feed aggregation service of FriendFeed to
embed social information collected from social networks into the Jazz client and
provide developers with group awareness as well. We argue that disseminating
additional social awareness information to developers working in dispersed teams can
help to speed up the establishment of organizational values, attitudes, and trust-based
inter-personal connections, thus facilitating the overall distributed software
development process.

While current work is focusing on the enrichment of the Jazz client, as future work
we plan to extend Jazz also on the server side by augmenting the Jazz user profile
with new professional information. Through the mashup of information collected
from both business- and development-oriented social websites (e.g., LinkedIn and

Ohloh), we intend to give to Jazz users the opportunity to customize their profile by
including information about professional connections and expertise.

Extending Jazz server-side model allows leveraging the information collected in
the whole profile rather than within a specific project area, thus enabling information
sharing within different teams inside Jazz. Moreover, we plan to develop the server-
side mashup as a web service that exposes personal information as RDF Linked Data
in order to enable Jazz users exporting professional profiles and reusing them in third-
party relevant applications.

Acknowledgments

Our thanks to Davide Fucci for implementing the initial prototype of our Jazz client
extension.

References

1. Abbattista, F., Calefato, F., Gendarmi D., and Lanubile, F. Incorporating Social Software
into Agile Distributed Development Environments. Proc. 1st ASE Workshop on Social
Sofware Engineering and Applications (SOSEA 2008), L'Aquila, Italy, 15 September 2008.

2. Aston, J., Laroche, L., Meszaros, G. Cowboys and Indians: Impacts of Cultural Diversity
on Agile Teams. Agile Conference (AGILE '08), Toronto, 4-8 Aug. 2008, pp. 423-428.

3. Begel, A., DeLine, R. Codebook: Social networking over code. Proc. Int’l Conf. Software
Engineering (ICSE ’09) Vancouver, Canada, 16-24 May 2009, pp. 263-266.

4. Booch, G. and Brown, A.W., Collaborative Development Environments, Advances in
Computers 59, 2003.

5. Chi, E.H., The Social Web: Research and Opportunities, IEEE Computer, vol.41, no.9,
pp.88-91, 2008.

6. Cubranic, D., Murphy, G.C., Singer, J., and Booth, K.S. Hipikat: a project memory for
software development. IEEE Transactions on Software Engineering, 31(6):446-465, 2005.

7. Dourish, P. and Bellotti, V. 1992. Awareness and coordination in shared workspaces. In
Proc. ACM Conf. Computer-Supported Cooperative Work (CSCW '92), Toronto, Ontario,
Canada, Nov. 1-4, 1992, DOI= http://doi.acm.org/10.1145/143457.143468.

8. Frost, R., (2007). Jazz and the Eclipse Way of Collaboration. IEEE Software, 24(6), pp.
114-117.

9. Herbsleb, J.D., Atkins, D.L., Boyer, D.G., Handel, M., and Finholt, T.A. Introducing
Instant Messaging and Chat into the Workplace. Proc. Int’l Conference on Computer-
Human Interaction (CHI ‘02), Minneapolis, MN, USA, 2002.

10. Holmstrom, H., Conchuir, E.O., Agerfalk, P.J, and Fitzgerald, B. Global Software
Development Challenges: A Case Study on Temporal, Geographical and Socio-Cultural
Distance. Int’l Conf. Global Software Eng. (ICGSE ’06), Florianopolis, Brazil, 3-11 Oct.
2006, pp. 3-11.

11. Jazz Platform Technical Overview,
https://jazz.net/learn/PrintableLearnItem.jsp?href=content/docs/platform-
overview/index.html

12. Kersten, M. Focusing knowledge work with task context. PhD Thesis, University of British
Columbia, 2007.

13. Ko, A.J., DeLine, R., and Venolia, G. Information Needs in Collocated Software
Development Teams. Proc. 29th international conference on Software Engineering,
Minneapolis, 2007.

14. Law, A., Ho, A., A study case: evolution of co-location and planning strategy, Proc. Agile
Development Conference ’04, Salt Lake City, Ut, USA, 22-26 June 2004, pp. 56- 62.

15. Merrill, D. 2006. Mashups: The new breed of Web app. An introduction to mashups. IBM
developerWorks. http://www.ibm.com/developerworks/xml/library/x-mashups.html

16. Omoronyia, I. Sharing awareness during distributed collaborative software development.
PhD Thesis, University of Strathclyde, November 2008.

17. Rayhan, S.H., Haque, N. Incremental Adoption of Scrum for Successful Delivery of an IT
Project in a Remote Setup. Proc. Agile Conference (AGILE ’08), Toronto, 4-8 Aug. 2008,
pp. 351-355.

18. Robinson, H., Sharp, H. Organizational culture and XP: three case studies. Proc. Agile
Conference (Agile ’05), 24-29 July 2005, pp. 49- 58.

19. Sarma, A., Noroozi, Z., and Hoek, A. Palantír: Raising Awareness among Configuration
Management Workspaces. Proc. 25th Int’l Conf. on Software Eng. Portland, 2003.

20. Sillito, J., Murphy G.C., and De Volder, K. Asking and Answering Questions during a
Programming Change Task. IEEE Trans. on Software Engineering, 34(4):434-451, 2008.

21. Spencer-Oatey, H. Culturally Speaking: Managing Rapport through Talk across Cultures.
New York: Cassel, 2000.

22. Summers, M. Insights into an Agile Adventure with Offshore Partners. Proc. Agile
Conference (AGILE ’08), Toronto, 4-8 Aug. 2008, pp. 333-338.

23. Yu, J., Benatallah, B., Casati, F., and Daniel, F. 2008. Understanding Mashup
Development. IEEE Internet Computing 12, 5, 44-52.

