

Weaving Eclipse Applications

Fabio Calefato, Filippo Lanubile, Mario Scalas,

1 Dipartimento di Informatica, Università di Bari, Italy

{calefato, lanubile, scalas}@uniba.it

Abstract. The Eclipse platform fully supports the ideas behind software
components: in addition it also adds dynamic behavior allowing components to
be added, replaced or removed at runtime without shutting the application
down. While layered software architectures may be implemented by assembling
components, the way these components are wired together differs. In this paper
we present our solution of Dependecy Injection, which allows to build highly
decoupled Eclipse applications in order to implement real separation of
concerns by systemically applying Aspect Oriented Programming and the
Model-View-Presenter pattern, a variant of the classic Model-View-Controller.

Keywords: Eclipse, Aspect Oriented Programming, Dependency Injection.

1 Introduction

The Dependency Inversion Principle [19] (DIP) states that (both high and low level)
software parts should not depend on each other’s concrete implementation but,
instead, be based on a common set of shared abstractions: one application of the DIP
is the Dependency Injection, also called Inversion of Control (IoC) [11]. From an
architectural perspective, DI allows to explicit the dependencies between software
components and provides a way to break the normal coupling between a system under
test and its dependencies during automated testing [25].

This is possible because the software is composed by aggregating simpler, loosely
coupled objects that are more easily unit-testable [32]. Additionally, by separating the
clients by their dependencies, we also make their code simpler because there is no
need for them to search for their collaborators.

The Eclipse Platform [3],[8] is a collection of frameworks for building integrated
development environments that has expanded to cover also the development of Rich
Client applications [21]. Its building blocks are the Open Services Gateway Initiative
(OSGi) [26] specifications, which define a dynamic module system for Java so as to
offer a plugin-based component model, and the Standard Widget Toolkit (SWT), a
graphic library which provides native application look and feel. However, the Eclipse
platform does not have Dependency Injection built-in.

Dependency Injection has proved to be a valuable architectural asset [11],[30]. In
particular, according to our own experience [4],[5], during the development of the
eConference over ECF [6], a text-based conferencing tool based on Eclipse
technologies developed internally, we integrated this pattern as a common asset to be

used for developing every plugin. Rather than creating yet another Dependency
Injection framework, we decided to reuse an already existing solution, while only
providing the necessary glue-code. In this paper we present how we have used Aspect
Oriented Programming to implement Dependency Injection and support the Eclipse
dynamic component model.

The remainder of this paper is structured as follows. Section 2 will present an
outline of the Dependency Injection and its use cases; section 3 will describe the
issues involved in implementing it within Eclipse; section 4 will present the broader
context in which we are applying it. Finally, section 5 will present conclusions and
future work.

2 Dependency Injection

Dependency Injection comes from the research field of Architecture Description
Languages (ADLs), which attempts to assemble or wire components together via
configuration mechanisms.

A component is a unit of software that can be instantiated and is insulated from its
environment by explicitly indicating (via interfaces) which services are provided and
required [23]. The idea of software component comes from the field of electronics
engineering: building software should be like wiring electronics components. As long
as interfaces are compatible, we should be able to replace old components with new
ones, an idea as old as 1968 [22].

The rest of this section provides a brief introduction about the Dependency
Injection in general and the Eclipse component model.

2.1 Background

Component Based Software Engineering (CBSE) has two basic concepts, Component
Types and Component Instances, which can be respectively mapped to Classes and
Instances in Object Oriented Programming (OOP).1

More specifically, in Java a class may be seen as a component declaration, thanks
to the definition of the implemented interfaces, which can be used as a description of
the services it provides. Nonetheless, a class definition fails to declare its
dependencies and some kind of convention is required to describe which interfaces
are required. This is where containers and configuration mechanisms kick in (see
Figure 1).

Clients relinquish to directly instantiate objects and, instead, request them to the
container. The latter will use its own configuration, describing the object dependency
graph, to retrieve such an instance and return it to the client for usage.

1 Within the rest of this paper we will use the terms "objects" and "components" as synonyms

unless we explicitly provide a different meaning for the different cases.

Configuration

Object

Collaborator

Collaborator

2. Container configures
the object …

1. Request an object

3. … and returns it

4. Client starts
using the object

Fig. 1. Dependency Injection

In this scenario, the container itself becomes a key component of a software
architecture: it must be boot-strapped before the application starts running and its
lifecycle is parallel to the application's. When included in full-fledged web application
frameworks, like Spring [30], the container is transparent to the application code: the
application must be still aware of the container services but must not care about
bootstrapping it since the web framework is handling this task by integrating itself
within the application server infrastructure (i.e., a J2EE Application Server). We will
call these managed containers.

In other uses cases, the container must be explicitly started by some initialization
code before it can be used by the client: in this case the client must have direct access
to container instance in order to perform requests for objects. We will call these
unmanaged containers. Integrating a container within the Eclipse Platform is such a
case.

Historically, three ways that allow clients to explicit their required dependencies
are used:

• Type 1 or Interface-based injection, where clients must implement specific
interfaces in order to tell the container which collaborators they need.

• Type 2 or Setter Injection, where clients declare their dependencies by the
means of setter methods, which accept specifics collaborator types.

• Type 3 or Constructor Injection, where clients’ constructor parameters are
their dependencies.

Type 1 is nowadays an inheritance from the past. Setter injection supports the Java
Beans convention about class' properties: the setter methods will be used by the
container to inject the dependencies. While this is a simple solution, it also opens the
class contract by allowing the dependency to be changed at a later time. Constructor
injection is stricter about the class contract: dependencies are provided at object
instantiation-time and can never be changed as long as an object is alive.

In order to write container configurations, a Domain Specific Language [10]
(DSL) is required. A DSL (such as CSS, regular expressions and SQL) is a language

targeted for a particular and limited purpose, not a fully fledged programming
language.

A DSL can be internal, that is, implemented by using an host language, an
approach popularized by the Ruby language, often providing a fluent API.

External DSLs, instead, use their own syntax and require a parser to be used. In the
case of Dependency Injection, XML has been the most used language, although its
syntax badly suits the purpose because of its verbosity-over-expressiveness ratio.

The appearance of built-in annotations within the Java platform from the release
5.0 has enabled an additional way for declaring dependencies, thus pushing several
container projects, like Google Guice [15], Pico Container [28] and even Spring, to
opt for internal DSLs. The client code will then use library-provided annotations to
mark methods or even fields that have to be used to inject required objects whereas
the container will use class introspection to scan for annotations and set the required
object references.

Internal DSLs have multiple advantages over external DSLs. With an internal
DSL: (1) developers have just a single source file to track; (2) the fluent interface is
written in the same programming language of the application (e.g., Java), which
typically benefit from strong refactoring tools available in many modern IDEs; (3)
there is early syntax check. By converse, with internal DSL an abuse of annotations
may produce a less readable source code.

Hence, we decided for an internal DSL-based solutions and opted in particular for
the Google Guice framework because of the existence of an extension, Peaberry [27],
which supports the OSGi component model.

2.2 The OSGi Component Model

OSGi is a set of specifications that define a dynamic module system for Java. In
OSGi, components may hide their implementations from other components by the
means of Services, objects shared across several components (see Figure 2).

Fig. 2. OSGi publish-subscribe mechanism (from http://www.osgi.org)

Services use a publish-subscribe pattern: components start listening for specific
services registered by other bundles. The Service Registry framework takes care of
tracking down the service instances while specific API is to be used by subscribers, to
get actual service instances, and publishers, to make service implementations
available to the rest of the system.

Services are deployed within bundles (a synonym of plugin) and the latter can be
installed, removed, or updated without shutting down the whole system. Hence,
because services can become available or unavailable over time, a service tracking
API is needed.
The vision that OSGi designers intended to endorse is that of a collaborative
environment where applications emerge by dynamically assembling different
components with no a-priori knowledge of each other (see Figure 3). One of the
biggest advantage of OSGi consists in the ability to update, change or introduce new
functionalities in a running software system without shutting it down, which is a why
OSGi is interesting for application server vendors.

Fig. 3. The OSGi architecture layers (from http://www.osgi.org).

Application bundles use the framework services, such as the publish-subscribe
mechanism, the dynamic lifecycle management, and standard Java security. The
whole system is based on the concept of modularity: bundles are just plain JAR files
with additional OSGi metadata, which define public and private parts. By versioning
bundles and, therefore, services, it is possible to have within the same Virtual
Machine different versions of the same classes.

Having to deal with dynamic services poses an important question when thinking
about a Dependency Injection of OSGi services. In this case, infact, a static injection
is not suitable since object structure graph is going to change over time. A simple
solution is the introduction of service proxies, as implemented by the
Guice/Peaberry. Service proxies act like placeholders for real services: when the
actual service component is available, then the proxy passes the call on, otherwise it
throws a Service Unavailable exception.

While there are several implementations of the OSGi platform specifications, the
current reference implementation is the Eclipse Equinox runtime, the core on top of
which the whole Eclipse eco-system is built. In addition to OSGi services, the Eclipse
platform historically supports another mechanism for extending software
functionalities through platform extensions (plugins). Extensions allow components to
be declared and made available to the system, without the need to be loaded until they
are actually used (lazy loading).

3 Weaving Dependency Injection

The Eclipse Platform does not support Dependency Injection out-of-the-box:
integrating it becomes a framework integration problem, in this particular case, of the
Guice and the OSGi frameworks. This section first describes the usage of AOP and
then outlines the problems of integration and related solutions.

3.1 AOP and Eclipse

Aspect Oriented Programming [16] (AOP) is a programming paradigm addressing the
separation of concerns into reusable modules called aspects. AOP complements
classical OOP rather than replacing it: while classes modularize primary application
concerns (like domain entities, business services, or user interface views), aspects
encapsulate secondary, or system, concerns, such as transactions, tracing, security
policy enforcement, or performance monitoring.

Merging classes and aspects together is a process called weaving and it is usually
performed at bytecode level. The weaving process may be executed at compile time
(compile time weaving, CTW), by the means of an ad-hoc compiler, or at load time
(load time weaving, LTW), by a weaving agent that intercepts class loading
operations performed by the Java Virtual Machine. At the base of AOP there is the
Join Points Model, an abstraction for the OOP language constructs, which exposes
where aspects can be hooked in the code (e.g., method calls or constructor
invocations). An aspect, then, is a construct composed by two parts: a rule-based
section, specifying which joint points to capture, and a body part, containing which
code to apply when the rules match.

AspectJ [17] is an AOP solution for Java that has tooling support within the
Eclipse IDE [2]. Supporting AOP within a dynamic environment as Eclipse poses
issues with the aspects weaving: (1) plugins hosting aspects that were woven on
classes belonging to other plugins may be become unloaded (i.e., because updated) so
the original unwoven classes should be restored before any other re-weaving is
possible; (2) new bundles hosting new aspects may be installed within the system and
needed to be woven on already loaded classes. All of these cases can only be
supported through a careful implementation of LTW, which is the purpose of the
Equinox Aspects project [9], which provides new metadata for supporting the two
aforementioned scenarios, a set of bundles exporting the weaving service as an OSGi-
compliant weaving agent, and a bytecode caching service to improve runtime
performance.

The most recent implementation also supports language metadata (through to Java
annotations) enabling a declarative way for expressing concerns ([18]).

When implementing Dependency Injection as a system concern, the primary
domain concern is the application code requesting the provisioning of collaborators.
A possible implementation of the former is detailed in the next section.

3.2 AOP as gluecode

The idea of using Dependency Injection as a system-wide cross-cutting concern and
as a reusable abstract base aspect is not new: frameworks like Spring already use it
[31]. In particular, programmers mark fields to be injected with ad-hoc annotations
like @Autowired so that a special Spring facility, called a weaving agent, will scan
components and provide the required dependencies at objects' instantiation time. AOP
is then used in order to match the annotations and wire the required code to perform
the operation. Nevertheless, implementing the same idea in a dynamic component
architecture like OSGi (and Eclipse) requires, instead, special care dealing with the
services' dynamic behavior and the different classloading architecture. In fact, an
aspect performing Dependency Injection needs to: 1) have access to the
BundleContext objects (different for every plugin) in order to access the OSGi
services; 2) be provided with a configured container instance (i.e, a Guice container
instance); 3) support plugins loading/unloading and, consequenty, aspects
corresponding weaving/unweaving (for example, by using Equinox Aspects). In this
context, such an aspect will contain all the code necessary to wire objects together
with their container, with concrete aspects only differing for the scope of its
application (i.e., the packages to weave).

#withinScope()
#getModules()
-doInjection()
-createInjector()

-injector
AbstractDependencyInjection

#getModules()
DependencyInjection

+configure()
BundleModule

+configure()

«interface»
Module

«uses»

Client bundle

Framework bundle

Fig. 4. Modularization of Dependency Injection.

The ability to reuse a common implementation for different contexts is really
useful when we have to deal with plugins. Because of the Eclipse platform specifics,
in fact, we need to have different concrete Dependency Injection aspects, one for each
plugin.

In this model a plugin may publish one or more service objects implementing a
contract, that is, a standard Java interface. These services are tracked by the OSGi
Service Registry and made available to the rest of the system. Client plugins may
request implementations of such contracts and use them as seamless Java Objects
with no overhead (apart from the retrieval operations). By intercepting framework
events, clients may track their needed dependencies but, in this model, application
code intermixes business code with system code. Often, it may be simpler to wrap the
objects behind a Proxy and have the latter deal with the OSGi behavior, throwing

exceptions if clients try to use unavailable objects. This is also the solution adopted by
Peaberry.

Additionally, to track service objects, the OSGi API is accessible only through the
BundleContext object which is passed to the plugin Activator's start()/stop() methods:
this is the standard mechanism provided by the framework to enable client bundles to
be notified about events. The bundle context is obviously different for each plugin, so
we have to implement a different Dependency Injection aspect for each plugin in
order to capture the right bundle context.

In Eclipse-based application, developers are required to provide implementations
of standard framework interfaces or classes in order to take advantage of the Eclipse
facilities. Frameworks are designed for adaptation and extension, not for integration
[20] and Eclipse is no exception since there is little room for configuring the objects
that are being created by the platform.

One solution would be to employ the Singleton pattern for locating the container
instance and have the newly instantiated object to inject itself, as shown in Listing 1.

public class MyCommandHandler extends AbstractHandler {

 @Inject private SomeService someService;

 public MyActionCommand() {

 // Use Singleton to retrieve the container

 // and call its services ...

 Container.getInstance().configure(this);

 }

 public Object execute (ExecuteEvent event) {

 someService.doSomething();

 return null;

 }

}

Listing 1. Usage of the Singleton pattern to perfom injection of platform created objects

At runtime, when the default constructor is invoked by the Eclipse framework, the
container is also invoked and the dependency injected. Employing Singletons to gain
access to the container instance is simple to implement but also defeats the decoupling
we are searching in our software system because we are tightly wiring the specific
container instance with the client code. Though there is no real other way out with
standard OOP but it is still possible to achieve the same effect without any

“hardwiring” of the dependency between the client code (our command handler) and
the specific container instance.

The basic idea behind this is to employ the (concrete) Dependency Injection aspect
to effectively act as glue-code between the application code instantiated by Eclipse
and the container while keeping both separated.

The first action of the Dependency Injection aspect is to intercept the call of the
start() method to capture the BundleContext object and the stop() method in order to
release service objects when they are no more needed (because OSGi uses reference
counting to know when a service object can be released). After this, the Dependency
Injection aspect will intercept the creation of instances of classes annotated with the
@Injectable annotation and configure them. The resulting effect at runtime is the
same as in previous solution (i.e., the constructor will get modified at runtime by the
weaving agent), but the code concerns remains separated and testable in isolation.
Thus, we are able to inject even objects that are written by developers, but instantiated
by the Eclipse Framework (e.g., views or command handlers). Doing so, we are using
AOP as an integration layer for different frameworks (Eclipse and Guice) in order to
bind the application components together [29] (i.e., views with their business service
objects), which is also one of the basic steps we need in order to proceed towards
further developments, as outlined in the next section.

4 Implementing Model-View-Presenter

Separating presentation from domain means ensuring that no part of the domain code
refers to any part in the presentation code [14]. This means that, when writing a
WIMP (Windows, Icons, Mouse and Pointer) GUI application, it should also be
possible to write a command line interface with the same functionalities without
touching the domain code.

Systematically applying the Model-View-Controller [13] (MVC) architectural
pattern is a way to enforce separation of concerns since it organizes GUI applications
along three primary concerns:

• Model, encapsulating the domain logic behind a set of abstractions (classes
and interfaces);

• View, showing the Model's content and notifying the input events to the
Controller;

• Controller, which reacts to Model and View events according to some
behavior.

Model View Presenter [12] (MVP) is an MVC-variant which further separates
Model and View so that they no longer knows about each other; instead, the
Controller (called Presenter) is the only listening to both layers' events, driving them
according to some application logic, which can be tested.

Separation of presentation and domain logic means not only a way to increase the
reuse software parts, but also to design better testable software. In fact, while tools
exist to capture mouse clicks for web user interfaces, the resulting macros are tricky
to maintain. Separating the domain code improves testability: the greater testability is,
the better design becomes.

Additionally, MVP can be applied it in a test-driven process by using the
Presenter-first technique [1]. Because this approach avoids dealing with the UI
directly, the views must be simple as they only present results or perform data-
binding. Testing the presenter means unit-testing it. Dependency Injection finds its
application also during testing to assemble the right MVP triplets.

X

View

Presenter

Model

<<observes
and

changes>>

<<observes
and

changes>>

Fig. 5. Modularization of Dependency Injection.

5 Conclusions and future work

At this time we have implemented the Dependency Injection bundle in a project of
ours, eConference [4], [5], [6]. eConference is an Eclipse RCP-based distributed
meeting system. The primary functionality provided by the tool is a text-based group
chat, augmented with agenda, meeting minutes editing, and typing awareness
capabilities. Around this basic functionality, other features have been built to help
organizers to control the discussion during distributed meetings. The tool has been
successfully used to offer the students the opportunity to experience development of
software in geographically, distributed multi-cultural teams [7]. The current
generation of eConference, eConference-over-ECF, is built on top of the Eclipse
Communication Framework and has won the 2006 Eclipse Innovation Award.

As future work, we expect to proceed through the following steps:
1. Extract the framework bundles (like Dependency Injection) from

eConference in an order to define a reusable tool for other applications.
2. Perform an architectural check-up of eConference.

3. Design and implement the MVP test and runtime bundles by using
eConference-over-ECF as a proof of concept (e.g., the whiteboard and file
transfer bundles)

4. Extend Guice and Peaberry in order to support Eclipse concepts and make
the process of writing tests for this environment a streamlined process.

5. Get feedback from academic as well as industry projects.

Acknowledgement

This work has been supported by the 2008 IBM Faculty Award.

References

1. Alles, M., Crosby, D., Harleton, B., Pattison, G., Erickson, C., Marsiglia, M., Stienstra, C.,
“Presenter First: Organizing Complex GUI Applications for Test Driven Development”,
Proceeding of the Agile Conference, 23-28 July 2006

2. AspectJ Development Tools, http://www.eclipse.org/ajdt
3. Birsan, D., “On Plug-ins and Extensible Architectures”, Queue, ACM, vol. 3, n. 2, March

2005, pp. 40-46.
4. Calefato, F., Lanubile, F., Scalas, M., "Porting a Distributed Meeting System to the Eclipse

Communication Framework", Proceedings of the 2007 OOPSLA workshop on eclipse
technology eXchange. p. 46-49, New York, 2007

5. Calefato, F., Lanubile, F., Scalas, M., "Evolving a Text-Based Conferencing System: An
Experience Report", Collaborative Computing: Networking, Applications and Worksharing.
p. 427-431, Los Alamitos, 2007

6. Calefato, F., Scalas, M., "Adopting the Eclipse Communication Framework: The Case of
eConference", Proceedings of the 3rd Italian Workshop on Eclipse Technologies (Eclipse-IT
2008). Bari, Italy, 2008

7. Damian, D., Lanubile, F., Mallardo, T., "An empyrical Study of the Impact of Asynchronous
Discussions on Remote Synchronous Requirements Meetings", Lecture Notes in Computer
Science, Vol. 3922, 2006

8. Eclipse Platform, http://www.eclipse.org
9. Equinox Aspects, http://www.eclipse.org/equinox/incubator/aspects/
10. Fowler, M., "Domain Specific Language" (Book web draft),

http://martinfowler.com/dslwip/
11. Fowler, M., “Inversion of Control Containers and the Dependency Injection pattern”,

http://martinfowler.com/articles/injection.html
12. Fowler, M., “Model View Presenter”,

http://martinfowler.com/eaaDev/ModelViewPresenter.html
13. Fowler, M., “Patterns of Enterprise Application Architecture”, Addison Wesley

Professional, 1st edition, 2002
14. Fowler, M., "Separating User Interface Code", IEEE Software, March/April 2001
15. Google Guice, http://guice.googlecode.com
16. Kiczales,G., Lamping, J. et Al., “Aspect Oriented Programming”, Proceedings of the

European Conference on Object-Oriented Programming, vol.1241, pp.220-242, 1997
17. Laddad, R., “AspectJ in action”, Manning, 2004

18. Laddad, R., "AOP and metadata: A perfect match",
http://www.ibm.com/developerworks/java/library/j-aopwork3/

19. Martin, R. C., "Dependency Inversion Principle",
 http://www.objectmentor.com/resources/articles/dip.pdf

20. Mattson, M., Bosch, J., Fayad, M. E., “Framework Integration: Problems, Causes,
Solutions”, Communications of the ACM, October 1999, Vol. 42, No. 10.

21. McAffer, J., Lemieux, J-M., “Eclipse Rich Client Platform: Designing, Coding, and
Packaging Java™ Applications”, Addison Wesley Professional, 2005.

22. McIlroy, M. D., "Mass Produced Software Components", "Software Engineering, Report on
a conference sponsored by the NATO Science Committee, Garmisch, Germany, 7th to 11th
October 1968", Scientific Affairs Division, NATO, Brussels, pg. 138-155, 1969 (a transcript
can be found at http://www.cs.dartmouth.edu/~doug/components.txt)

23. McVeigh, A., “The Rich Engineering Heritage Behind Dependency Injection”,
http://www.javalobby.org/articles/di-heritage/

24. Melnik, G. , Maurer, F., Chiasson, M. Executable Acceptance Tests for Communicating
Business - Requirements: Customer Perspective. In Proc. of the Agile Conference
(AGILE’06), IEEE Computer Society, pp. 35-46, July 2006.

25. Meszaros, G., “xUnit Test Patterns”, Addison Wesley, 2007
26. OSGi Consortium, Open Service Gateway initiative (OSGi), http://www.osgi.org
27. Peaberry, http://peaberry.googlecode.org
28. PicoContainer, http://www.picocontainer.org
29. Schmidt, D.C., Gokhale, A., Natarajan, B., “Leveraging Application Frameworks”, Queue,

July/August 2004.
30.Spring Framework, http://www.springframework.org
31. Walls, C., Breidenbach, R., "Spring in Action", Manning Publications, 2008
32.Weiskotten, J., “Dependency Injection and Testable Objects”, Dr. Dobbs Journal,

http://www.ddj.com/development-tools/185300375

