
FUNCTION CLONE DETECTION IN WEB APPLICATIONS:  

A SEMIAUTOMATED APPROACH 

FABIO CALEFATO, FILIPPO LANUBILE, TERESA MALLARDO 

Dipartimento di Informatica, University of Bari, Italy 
{calefato,lanubile,mallardo}@di.uniba.it 

 
 

Many web applications use a mixture of HTML and scripting language code as the front-end to business 
services, where scripts can run on both the client and server side.  

Analogously to traditional applications, code duplication occurs frequently during the development and 
evolution of web applications. This ad-hoc but pathological form of reuse consists in copying, and 
eventually modifying, a block of existing code that implements a piece of required functionality. 
Duplicated blocks are named clones and the act of copying, including slight modifications, is called 
cloning. When entire functions are copied rather than fragments, duplicated functions are called function 
clones.  

This paper describes how a semiautomated approach can be used to identify cloned functions within 
scripting code of web applications. The approach is based on the automatic selection of potential function 
clones and the visual inspection of selected script functions. The results obtained from the clone analysis 
of four web applications show that the semiautomated approach is both effective and efficient at 
identifying function clones in web applications, and can be applied to prevent clone from spreading or to 
remove redundant scripting code. 

Key words: web applications, refactoring, code duplication, clone detection, function clones 
 

1 Introduction  

Code duplication occurs frequently during the development and evolution of large software 
systems. This ad-hoc form of reuse consists in copying, and eventually modifying, a block of existing 
code that implements a piece of required functionality. Duplicated blocks are named clones and the act 
of copying, including slight modifications, is called cloning. When entire functions are copied rather 
than fragments, duplicated functions are called function clones. 

Cloning often occurs because programmers find it cheaper and quicker using the copy-and-paste 
feature of their editors than writing instructions from scratch or applying correct reuse mechanisms, 
based on invocation, inclusion or inheritance. Cloning can also be unintentionally encouraged 
whenever individual performance are assessed by measuring developers’ productivity as code size 
over effort. 

Cloning can be considered a pathological form of code reuse because of its negative effects on 
software maintenance and evolution. When a failure is discovered during testing or normal operations, 
the underlying fault might be duplicated together with clones, thus multiplying the cost of repair. In 
general, when clones are affected by a modification, applying a change is more expensive and error-
prone because of the larger impact and possible side effects. Another undesirable consequence is that 
redundancy increases the size of a software system, thus complicating program comprehension.  



 2      Function Clone Detection in Web Application: A Semiautomated Approach 
 

Identifying software clones for the purpose of prevention or removal can help to defend against 
“software aging” [27], where even small changes become very difficult to apply. 

Researchers have extensively studied cloning detection for being applied to procedural programs 
[1, 2, 3, 6, 12, 21, 25] as well as object-oriented programs [4, 5, 12, 14, 28]. Analogously to procedural 
and object-oriented programs, code duplication occurs frequently during the development and 
evolution of web applications, which use web technologies as the front-end to business services for the 
ease of deployment and minimal client configuration [10]. Since web applications evolved from web 
sites by adding business functionality, many people have erroneously thought that software 
engineering principles and methods did not apply to web development [29]. As a consequence, web 
applications are often developed incrementally but without a disciplined approach, and the 
phenomenon of duplicated code is even worse, because more pervasive, for this class of applications. 

Clone identification has been proposed for static web documents [8, 11, 30], written in HTML. 
However, modern web applications are a mixture of HTML and scripting language code, where scripts 
can run as event handlers on the client-side or perform HTTP processing on the server-side. Scripts 
come embedded in client pages (i.e., documents available to browsers) as the content of the script 
HTML element, or they are retrieved from include files (containing pure scripting code with no 
HTML) using the src attribute (of the script HTML element) in every client page that needs them. The 
vast majority of client scripts are written with JavaScript. On the server side, the enabling technologies 
are more varied depending more on the vendors than on standards. A major approach to server-side 
processing of HTTP requests is using server pages, i.e., documents containing HTML annotated with 
server-side interpreted scripts. Many scripting languages are supported and representative examples 
are Java Server Pages (JSP), Microsoft’s Active Server Pages (ASP), and PHP. 

The goal of our research is to investigate how to improve poorly designed web applications. 
Finding function clones in scripted web pages for the purpose of eliminating duplicated code can be 
seen as a first step to introduce refactoring [15]. This paper describes how a semiautomated approach 
can be used to identify cloned functions within scripting code of web applications. The approach is 
based on the automatic selection of potential function clones and the visual inspection of selected 
script functions. In [23] we reported a preliminary evaluation of our approach. In this paper, we extend 
the experimentation with four significant web applications which are currently being maintained and 
evolved. 

This paper is organized as follows. Section 2 presents our approach for function clone 
identification in scripted web pages. Section 3 introduces the case studies and reports the experimental 
results. Section 4 summarizes related work. Finally, Section 5 provides conclusions and directions for 
future work. 

  



 F. Calefato, F. Lanubile  and T. Mallardo      3

 

2 The Clone Detection Approach 

Our approach to detect cloned script functions is based on two main stages: (1) automatic selection of 
potential function clones, and (2) visual inspection of selected script functions. In the following we use 
as examples some code excerpts from a web application within the commercial domain. The 
application, called Conference Management Service, is part of the MS Exchange 2000 Conferencing 
Server [26] and keeps track of scheduled conferences and provides administrators with control of 
attendee access to conferences. 

2.1  Automatic selection of potential function clones 

Most of the times script functions are copied without any change or just slight modifications such 
as  changes to indentation, comments, blank lines, local variables or literals. Often these differences 
are negligible with respect to duplication removal, other times parameters should be added to functions 
in order to account for variability. Sometimes, the body of script functions is extended to add new 
functionality or changed to modify its logic. 

Based on the observation of web programmers’ behavior and the investigation of many existing 
web applications, the selection of candidate function clones is based on the following assumption: 
whenever web programmers find a script function which fits their required functionality, they 
duplicate code without changing the function name. 

The selection of candidate function clones is automatically performed by a tool, called eMetrics, 
which we developed at the University of Bari. The tool analyzes web applications based on 
Microsoft’s ASP technology and outputs results in HTML and Excel format. Besides measuring the 
size of a web application to different granularity levels (including function-grain level), the tool selects 
homonym programmer-defined functions (written in JavaScript or VBScript) as potential cloned 
functions. Homonymy is defined by the equality of identifiers that are used as function names in the 
declaration of script functions. The comparison of function names is case insensitive (JavaScript is a 
case-sensitive language but VBScript is not) and does not take into account the list of parameters. 

For each homonym function, selected as a potential cloned function, the tool reports the 
processing side (client or server), the extended file name (i.e., including complete path) and the 
following three measures of code length: 

• number of lines of code (LOC) 

• number of effective lines of code (ELOC), excluding comments and blank lines 

• number of comment lines of code (CLOC) 

The tool provides both an overview sheet including all the potential cloned script functions (see 
Figure 1), as well as a sheet for each group of homonym functions (Figure 2). 

 

 



 4      Function Clone Detection in Web Application: A Semiautomated Approach 
 

 
Figure 1. Overview sheet reported by the tool 

 
Figure 2. Function-specific sheet reported by the tool 

  



 F. Calefato, F. Lanubile  and T. Mallardo      5

2.2  Visual inspection of selected script functions 

The second stage of our approach uses as input the report of potential cloned functions as a guide 
to the visual inspection of code. The goal of this stage is to check whether homonym script functions 
can be actually considered clones, and to identify the opportunities of refactoring. 

As a first step, pairs of homonym script functions are classified according to the clone 
classification scheme shown in Table 1. 

 
Table 1. Classification for potential function clones 

Level Name Description 

1 Identical No differences 

2 Nearly-identical Differences are negligible and do not affect output or state 

3 Similar Despite differences, there are common characteristics that 
can be factored out 

4 Distinct Functions share the name but what they do is so dissimilar 
that refactoring does not make sense 

 

Classification follows an ordinal scale based on the degree of equivalence between a pair of script 
functions. Checking proceeds from level 1 to level 4 and stops when a level can be recognized. 
Checking is helped by looking at size measures in the report of suspect clones: functions with similar 
size metrics are inspected first. 

The first level, Identical, holds when the two functions are exactly equal, because no changes have 
been applied after the copy. This is the simplest occurrence of function cloning: it does not matter 
which of the copies will be taken off to eliminate duplication. 

The second level, Nearly-identical, occurs when the two functions differ for modifications which 
have no effect on output or application state. Analogously to the first level, any of the cloned functions 
can be removed during refactoring, but you need to choose which copy will be discarded. Changes to 
indentation, comments, and blank lines surely fall in this class. Also differences in local variables or 
constants, if not used for output, can be classified at Level 2. Figure 3 shows two client-side script 
functions, both named refreshConfPanel, that are located in the same ASP file: the former in the head 
element and the latter in the html element. They differ because the former (Figure 3.a) uses a constant 
to represent the frequency of screen-refresh while the latter (Figure 3.b) uses the same value but in a 
numerical form and includes one comment line. The second function might be removed, and then the 
two functions can be classified as Nearly-identical clones. 

 

 

 

 

 

 



 6      Function Clone Detection in Web Application: A Semiautomated Approach 
 

 
function refreshConfPanel(secDelay) 
{ 
  window.setTimeout("document.location.reload(true);", secDelay*SECOND); 
} 

(a) 
 
function refreshConfPanel(secDelay) 
{ 
  // Timeout uses milliseconds 
  window.setTimeout("document.location.reload(true);", secDelay*1000); 
} 

(b) 

Figure 3. A pair of script functions classified as Nearly-identical 

 

The third level, Similar, takes place when two script functions have common characteristics, such 
as same code structure and same expressions, but refactoring will require changes to unify the 
functions. This may happen when the two function clones have different output statements or work on 
different inputs. A simple refactoring can be the addition of parameters to take into account variability. 
For example, Figure 4 shows two client-side script functions, both named OnResolveClickContinue, 
that differ for a string assigned to the action field of the form. To invoke the same function exemplar, a 
parameter should be added to the script function and callers should pass a string as argument. The 
resulting script function should be placed in a client-side include file (with a ‘js’ filename extension) 
and retrieved using the src attribute of the script tag. Then we can classify the couple of selected script 
functions as clones at level 3 (Similar). 

 
function OnResolveClickContinue() 
{ 
var bRet; 
bRet = OnResolveClickContinueWork(); 
document.formSchedule.action = "schedule.asp" 
document.formSchedule.hiddenResolveStatus.value = "Resolved" 
if(bRet) 
{ 
document.formSchedule.submit(); 

} 
return bRet; 

} 

(a) 
 
function OnResolveClickContinue() 
{ 
var bRet; 
bRet = OnResolveClickContinueWork(); 
document.formSchedule.action = "send.asp" 
document.formSchedule.hiddenResolveStatus.value = "Resolved" 
if(bRet) 
{ 
document.formSchedule.submit(); 

} 
return bRet; 

} 
(b) 

Figure 4. A pair of script functions classified as Similar 

 

  



 F. Calefato, F. Lanubile  and T. Mallardo      7

Another example is provided in Figure 5 that shows two script functions, named OnLoadBody, 
which differ because of a numeric value passed as argument to the same called function. These two 
homonym functions might be replaced by a new script function with a parameter added to its 
signature, and then they can be classified as function clones at level 3 (Similar). 

 
function OnLoadBody() 
{ 
if (null != parent.frames["panel"]) 
{ 
if (null != parent.panel.ChangeToMenuItem) 
{ 
parent.panel.ChangeToMenuItem(14); 

} 
} 

} 

(a) 
 
function OnLoadBody() 
{ 
if (null != parent.frames["panel"]) 
{ 
if (null != parent.panel.ChangeToMenuItem) 
{ 
parent.panel.ChangeToMenuItem(10); 

} 
} 

} 
(b) 

Figure 5. Another pair of script functions classified as Similar 

 

Sometimes, a function is copied and augmented with new statements (see Figure 6). This 
duplication can be eliminated by invoking the original function from the extended function. However, 
duplication removal might be time consuming and you might decide whether refactoring is worth the 
effort. 

 



 8      Function Clone Detection in Web Application: A Semiautomated Approach 
 

 
sub AddSubscription(SubLevel, MemberID, CatID, ForumID, TopicID) 
'--- Insert the appropriate sublevel subscription 
StrSql = "INSERT INTO " & strTablePrefix & "SUBSCRIPTIONS" 
StrSql = StrSql & 

"(MEMBER_ID, CAT_ID, FORUM_ID, TOPIC_ID) VALUES (" 
& MemberID & ", " 

if sublevel = "BOARD" then 
StrSql = StrSql & "0, 0, 0)" 
elseif sublevel = "CAT" then 
StrSql = StrSql & CatID & ", 0, 0)" 

elseif sublevel = "FORUM" then 
StrSql = StrSql & CatID & ", " & ForumID & ", 0)" 

else 
StrSql = StrSql & CatID & ", " & ForumID & "," & TopicID &")" 

end if 
my_Conn.Execute(strSql),,adCmdText + adExecuteNoRecords 

end sub 
(a) 

 
sub AddSubscription(SubLevel, Member_ID, CatID, ForumID, TopicID) 
  ' --- Insert the appropriate sublevel subscritpion 
  strSql = "INSERT INTO " & strTablePrefix & "SUBSCRIPTIONS" 
  strSql = strSql & "(MEMBER_ID, CAT_ID, FORUM_ID, TOPIC_ID) VALUES (" &  
         Member_ID & ", " 
  if sublevel = "BOARD" then 
     strSql = strSql & "0, 0, 0)" 
 elseif sublevel = "CAT" then 
     strSql = strSql & CatID & ", 0, 0)" 
 elseif sublevel = "FORUM" then 
     strSql = strSql & CatID & ", " & ForumID & ", 0)" 
 else 
     strSql = strSql & CatID & ", " & ForumID & ", " & TopicID & ")" 
 endif 
 my_Conn.Execute(strSql),,adCmdText + adExecuteNoRecords 
 
 Response.Write "You are subscribed to " 
 if sublevel = "BOARD" then 
       Response.Write "<br /> all posts in the "  
             Response.Write "<br />" & strForumTitle & "forums " 
 elseif sublevel = "CAT" then 
       strSql="SELECT "& strTablePrefix &"CATEGORY.CAT_NAME " 
       strSql= strSql & "FROM" & strTablePrefix & "CATEGORY " 
 ... 

(b) 

Figure 6. Yet another pair of script functions classified as Similar 

 

 

The fourth level, Distinct, occurs when two script functions, albeit homonym, differ so much in 
what they do (and then in how they do it) that any refactoring for eliminating duplication would not 
make sense. Function names might be equal by chance or because of a common triggering event. For 
example, Figure 7 shows two script functions, again named OnLoadBody, which differ with respect to 
the accomplished functionality. These functions are homonym just because they are triggered by the 
same onLoad event in the body element. Then the cloning relation is classified at level 4 (Distinct), 
and it is excluded from refactoring for duplication removal. 

 

  



 F. Calefato, F. Lanubile  and T. Mallardo      9

function OnLoadBody() 
{ 
 <% If((Request.Form("hiddenResolveStatus")="Send") AND  
    (bNamesToResolve)) Then %> 
       CopyFields(); 
  <% EndIf %> 
} 

(a) 
 
function OnLoadBody() 
{ 
  ChangeToMenuItem(<%=inSelection%>); 
} 

(b) 
Figure 7. A pair of script functions classified as Distinct 

 

After having classified potential function clones, the script functions are grouped according to the 
refactoring opportunity. A refactoring opportunity is a simple but useful change that merges multiple 
function clones without modifying the external behavior of the application. 

If a set of homonym functions shares the same level-n cloning relation, then the set is classified as 
a group at level-n. For example, if there are 4 homonym script functions and all 6 pairs can be 
classified as Identical (level 1), then we have one group of 4 script functions at level 1 for doing 
refactoring. However, if one of the script functions is Similar (rather than Identical or Nearly-
identical) with respect to the other 3 homonyms, then there is a group of 4 script functions at level 3, 
because we want to take the most from a unique refactoring opportunity. On the contrary, if one of the 
script functions is Distinct (rather than Identical, Nearly-identical, or Similar), then there is one group 
of just 3 script functions at level 1 and the different (albeit homonym) function is considered out of the 
refactoring scope. This is because a level-4 cloning relation should be considered as a false positive 
since the tool has erroneously identified homonym functions as suspect clones. Figure 8 shows how a 
function-specific sheet is edited to take notes of groups of clones corresponding to refactoring 
opportunities. 

 

 
Figure 8. Function-specific sheet annotated with respect to refactoring opportunities 

 



 10      Function Clone Detection in Web Application: A Semiautomated Approach 
 

3 Case Studies 

We applied our approach for function clone detection to four web applications with the main goal 
to assess the effectiveness and efficiency of the approach, and measure the extent of refactoring 
opportunities. We used three web applications from the public domain, for which we did not have 
expectations about how much duplication exists, and one web application from the research domain 
for which it was known that there were many duplicated script functions. 

The first web application, QuickAuction [35], is a basic auction application that can be integrated 
into other web sites to add simple auctions features. The second and third applications, respectively 
Web Wiz Forums [34] and Snitz Forums 2000 [32], are both web-based bulletin board engines. The 
fourth web application, IBIS [22], provides groupware support for distributed software inspections. All 
four applications use MS ASP technology to implement web server pages. They range in size from 
tens to hundreds of web pages, and are currently being maintained and evolved. Table 2 shows a 
characterization of the web applications that we selected as case studies, including size-related 
statistics. 

We first used the eMetrics tool to retrieve potential function clones in the four web applications. 
Then, we used the reports from the tool to visually inspect the code of the selected script functions, 
classify suspect clones, and group discovered function clones according to refactoring opportunities. 

 
Table 2. The web applications used for case studies 

 QuickAuction Web Wiz 
Forums 

Snitz Forums 
2000 IBIS 

Version 2.0.0 7.01 3.4.3 1.3.2 

Client-side scripting 
language none JavaScript JavaScript JavaScript 

Server-side scripting 
language VBScript VBScript VBScript JavaScript 

No. of files (total) 65 403 217 257 

No. of ASP files 48 159 93 124 

No. of HTML files 2 0 1 0 

No. of client-side 
include files 0 1 3 10 

No. of server-side 
include files 11 29 29 7 

No. of client-side script 
functions 0 18 47 103 

No. of server-side 
script functions 63 50 222 299 

 

  



 F. Calefato, F. Lanubile  and T. Mallardo      11

31.  Effectiveness and Efficiency 

In this section we present the overall performance of our approach with respect to effectiveness 
and efficiency. Table 3 reports the following measures: 

• number of existing function clones: script functions that provide identical behavior or share 
same functionality;  

• number of candidate function clones: homonym script functions that have been automatically 
selected by the tool as potential clones; 

• number of discovered function clones: homonym script functions that have been classified as 
Identical, Nearly-Identical or Similar, and then can be considered as true function clones; 

• number of false negatives: existing function clones that have not been discovered; in our 
approach function clones with different names remain undiscovered;   

• number of false positives: homonym script functions that have been classified as Distinct, and 
then have been erroneously selected as candidate clones; 

• recall: percentage of discovered function clones over existing function clones; 

• precision: percentage of discovered function clones over candidate function clones; 

• inspection effort: effort (measured as person/hours) spent for the visual inspection of code to 
classify candidate function clones and identify the refactoring opportunities. 

 
Table 3. Effects of function clone detection 

 QuickAuction Web Wiz 
Forums 

Snitz Forums 
2000 IBIS 

No. of existing 
function clones 40 47 69 166 

No. of candidate 
function clones 40 58 75 186 

No. of discovered 
function clones 36 45 46 143 

No. of false negatives 4 2 23 23 

No. of false positives 4 13 29 43 

Recall 90% 96% 67% 86% 

Precision 90% 78% 61% 77% 

Inspection effort 
(person/hours) 1h 40min 2h 45min 2h 20min 7h 5min 

 

Recall and precision were initially developed for evaluating Information Retrieval systems [33] 
and now are being used in assessing clone detection techniques [19, 20]. We use the recall metric for 
evaluating the effectiveness of the approach to clone detection, while precision and inspection effort 

 



 12      Function Clone Detection in Web Application: A Semiautomated Approach 
 
contribute to assess its efficiency. The other metrics provide the basis for the computation of recall and 
precision. 

Recall reflects the completeness of the results produced by a clone detection technique by 
comparing discovered clones with clones that really exist and could have been retrieved with a 
faultless clone detector (for practical reasons, the faultless clone detector is replaced by human 
analysis of source code). Thus, the higher the amount of false negatives (undiscovered clones), the 
lower the recall. In our multiple case studies, values of recall were high in three cases (between 86% 
and 96%) but not for the Snitz Forums application (67%). This can be explained by the presence on the 
client side of many analogous functions that were named differently depending on a variable which 
characterized the differences among functions. In this case, the assumption behind function clone 
selection (programmers copy and paste script functions without changing function names) resulted 
partially invalid. 

Precision reflects the accuracy of a clone detection technique by comparing discovered clones with 
those that were selected as candidate clones. When the amount of false positives is high (and then 
precision is low), more time will be wasted for inspecting irrelevant components. While precision was 
high for the QuickAuction case study (90%), values of precision for the remaining three case studies 
varied between 61% and 78%. This is partly explained by extensive changes that have occurred after 
initial copy-and-paste with the consequence that it would be easier to redesign from the beginning 
rather than applying refactoring. 

Although the tool selected some irrelevant function clones, the effort to visually inspect of code 
varied between 1 hour 40min and 2 hours 45min for three case studies. The inspection of candidate 
function clones in IBIS took about 7 hours because there were much more function clones in the 
application. Thus, our approach detects a significant amount of function duplication with a reasonable 
effort. 

3.2  Refactoring opportunities 

In this section we show how clone detection helped to identify refactoring opportunities for duplication 
removal.  

Results for the four cases studies are reported respectively in Table 4-7. For each level, from level 1 
(Identical) to level 3 (Similar), the following values are reported: 

• number of refactoring opportunities: they correspond to groups of discovered function clones 
that share the same level of clone relationship and can be merged into a single function;  

• function clones involved in refactoring: the number of functions that are affected by refactoring 

• % of functions involved in refactoring: the number of function clones involved in refactoring 
over the total number of script functions in the application; 

• ELOC involved in refactoring: the amount of scripting code affected by change, measured as 
effective lines of code; 

• % ELOC involved in refactoring: the amount of scripting code affected by change over the 
amount of code of all script functions in the application. 

The total columns in the tables contain the cumulative frequencies and cumulative percentages of 
the three levels (Identical, Nearly-identical, Similar). The totals represent the number and the impact 
of refactoring opportunities that are worth taking advantage of.  

  



 F. Calefato, F. Lanubile  and T. Mallardo      13

Results are reported separately for client-side and server-side script functions, except for the 
QuickAuction application that does not use scripting code on the client side. 

Refactoring of QuickAuction and Web Wiz Forums would involve most of the server-side script 
functions (respectively 57% and 80%) within the applications. We discovered that Web Wiz Forums 
included two identical ASP files in different subsystems. Then for each of the twenty script functions 
contained in the duplicated file there is a refactoring opportunity corresponding to a pair of identical 
functions. 

While refactoring affected 21% of server-side script functions of Snitz Forums 2000, none of the 
12 existing client-side function clones was selected for refactoring because cloned script functions had 
been renamed after duplication. 

 
Table 4. Refactoring opportunities in QuickAuction 

 
 Server-side 

 Level 1 Level 2 Level 3 Total 

Refactoring opportunities 4 0 4 8 

Function clones involved in refactoring 16 0 20 36 

% Functions involved in refactoring 25% 0% 32% 57% 

ELOC involved in refactoring 224 0 504 728 

% ELOC involved in refactoring 19% 0% 42% 61% 

 

 
Table 5. Refactoring opportunities in Web Wiz Forums 

 Client-side Server-side 

 Level 1 Level 2 Level 3 Total Level 1 Level 2 Level 3 Total 

Refactoring 
opportunities 1 0 1 2 20 0 0 20 

Function 
clones 
involved in 
refactoring 

2 0 3 5 40 0 0 40 

% Functions 
involved in 
refactoring 

11% 0% 17% 28% 80% 0% 0% 80% 

ELOC 
involved in 
refactoring 

6 0 54 60 1120 0 0 1120 

% ELOC 
involved in 
refactoring 

2% 0% 19% 21% 73% 0% 0% 73% 

 



 14      Function Clone Detection in Web Application: A Semiautomated Approach 
 

 

 
Table 6. Refactoring opportunities in Snitz Forums 2000 

 Client-side Server-side 

 Level 1 Level 2 Level 3 Total Level 1 Level 2 Level 3 Total 

Refactoring 
opportunities 0 0 0 0 12 1 9 22 

Functions 
involved in 
refactoring 

0 0 0 0 28 4 14 46 

% Functions 
involved in 
refactoring 

0% 0% 0% 0% 13% 2% 6% 21% 

ELOC involved 
in refactoring 0 0 0 0 663 73 476 1212 

% ELOC 
involved in 
refactoring 

0% 0% 0% 0% 10% 1% 7% 18% 

 

 
Table 7. Refactoring opportunities in IBIS 

 Client-side Server-side 

 Level 1 Level 2 Level 3 Total Level 1 Level 2 Level 3 Total 

Refactoring 
opportunities 7 1 2 10 4 5 6 15 

Functions 
involved in 
refactoring 

24 2 9 35 48 35 25 108 

% Functions 
involved in 
refactoring 

23% 2% 9% 34% 16% 12% 8% 36% 

ELOC 
involved in 
refactoring 

389 7 77 473 281 736 829 1846 

% ELOC 
involved in 
refactoring 

12% 0% 2% 15% 3% 8% 9% 21% 

 

  



 F. Calefato, F. Lanubile  and T. Mallardo      15

 

Finally, more than one third of script functions in the IBIS application could be improved by 
means of refactoring. Most of the refactoring opportunities were at level 1 (Identical) and then simple 
to apply. We then applied refactoring on the IBIS application, and spent less than one person/day to 
eliminate more than one hundred of duplicated script functions. 

 

4 Related Work 

Various techniques are used to detect clones in software systems: string and token matching [3, 12, 
16, 17, 18, 24, 31], subtrees-subgraphs comparison [6, 19, 20], and metric-based characterization [2, 5, 
19, 21, 25]. Also, numerous tools have been built to find clones in source code written in a variety of 
programming languages, such as C, C++, COBOL, Smalltalk, Java, and Python. 

The Dup tool [3] uses a line-by-line parameterized match to identify code portions that differ in 
semantic substitution of variable and constant names. A string matching algorithm is also applied by 
the Duploc tool [12, 31]. It offers a clickable matrix display that allows users to visually inspect the 
source code that produced the match. Like our semiautomated approach, automatic clone detection and 
visual exploration of code are combined to guide refactoring. In [16, 17], a viewing tool is presented 
that identifies exact repetitions of text using fingerprints, which are short strings used in place of larger 
data objects for more efficient comparisons. Sif [24] is based on the same approach. CCFinder [18] 
concatenates the tokens of a single file into a single token sequence, skipping whitespaces and 
applying transformation rules, such as replacement of variables with special tokens. From all the 
substrings in the transformed token sequence, equivalent pairs are detected as clone pairs.  

Baxter et al. [6] propose a tool that identifies cloned fragments in C source code and also produces 
macro bodies for doing refactoring. The tool parses source code to build an Abstract Syntax Tree 
(AST), and then compares subtrees for similarity, using a hashing function. An analogous approach is 
proposed in [20], where PDGs (Program dependence graphs) are used to represent both the structure 
and the data flow within the program. 

The above clone detection techniques do not easily scale up because they are computationally 
expensive [5]. In order to improve efficiency, Mayrand et al. [25] use metrics as a signature for code 
functions, thus allowing for a fast search of code duplication at the function-grain level. The strategy 
for identifying function clones is based on four points of comparison: function name, layout metrics, 
expression metrics, and control flow metrics. Any pair of functions is then compared with respect to 
these characteristics to define an ordinal scale of cloning, based on degree of similarity between 
function clone pairs. The first class of this taxonomy, ExactCopy, requires that the function names are 
identical as well as metric values. The second class, DistinctName, has the same requirements of the 
first class except for the names of functions which are different; it assumes that function cloning 
occurs by renaming the function to avoid name conflicts in a module. An empirical validation of the 
proposed classification, shows that the first classification level, ExactCopy, is predominant over the 
second one, DistinctName, which accounts for less than 1% of the overall function clones. The other 
classification levels are not reliable because they result in a too high number of false positives (i.e., 
low precision). This same approach, but limited to the first two classes, has been used in [1, 2] to study 
cloning evolution across multiple releases. However, no empirical data are provided to distinguish 
between the two classes.  

 



 16      Function Clone Detection in Web Application: A Semiautomated Approach 
 

Analogously to [25], our approach to clone analysis focus on whole functions rather than code 
fragments. However, because the metric-based approach appear to be effective only for the ExactCopy 
class, rather than using measures to detect and automatically classify clones, we select homonym 
functions as potential function clones, and use size measures as a guideline for the visual inspection.  

Kontogiannis [19] proposes another metric-based approach to make clone detection faster. The 
approach uses an AST for program representation and computes the Euclidean distance between code 
fragments on a 5-dimensional space defined by data-flow and control-flow metrics. Unlike previous 
studies, the experimental results include recall and precision values. Results show that a recall of 60% 
can be achieved with a precision of 41%, while at higher recall values (e.g., 70%) precision goes down 
(e.g., 19%). Because a fast clone detection is obtained at the expense of accuracy, Balazinska et al. [5] 
use a hybrid approach of metric-based characterization and dynamic pattern matching: measurement is 
limited to a pre-processing stage for reducing the search space, and then a pattern matching algorithm 
is applied to compare code fragments for object-oriented programs written in Java.  

Although the automatic detection of clone candidates, in our approach, is based on the search for 
homonym functions, we achieve better results of recall (between 67% and 96%) without drops in 
precision (between 61% and 90%). In the case of the largest web application, for which we removed 
more than one hundred of duplicated script functions, recall is 86% and precision is 77%. With such 
good results in the domain of web applications more sophisticated solutions are not worth being 
implemented and applied. We hypothesize that the naïve approach to web application development in 
the early years have resulted in so many clones that even simple clone detection solutions are 
extremely effective. 

The identification of clones in web documents has been proposed by Di Lucca et al. in [11]. They 
address the detection of similar static HTML pages by computing the distance between items in web 
pages and evaluating their degree of similarity. Cloned static web pages are also identified in [8, 30] 
with the aim of restructuring them into dynamic web pages that retrieve extracted information from a 
database. However, the progressive reduction of purely static web sites suggests that looking for 
HTML duplication in static web pages is not enough. Then, our approach, focusing on scripted code 
within client and server pages in web applications, can be seen as a complement of clone identification 
in static web documents. 

5 Conclusions  

Clone detection techniques based on string and token matching or subtrees-subgraphs comparison 
have been proposed for programs written in C/C++ or Java. They have never been implemented and 
experimented for scripted web applications. Because they are computationally expensive, metric-based 
approaches have been introduced for identification of clones. However, metric-driven clone detection 
have failed to achieve high levels of recall and precision. When recall is kept high, precision 
dramatically drops down. In other words, using structural metrics for automatically detecting candidate 
clones has not shown to work well, unless their use is limited to a preprocessing stage. 

This paper presented a semiautomated approach for identifying function clones embedded in 
HTML scripting of web applications. A list of potential cloned script functions is automatically 
produced by a tool, while classification of suspect clones is performed through visual inspection of 
source code. The contribution of this approach is directed to support both verification tasks, before a 
new file is put under configuration management, and reengineering activities, after that the lack of 
method in web development has driven applications towards code decay. 

  



 F. Calefato, F. Lanubile  and T. Mallardo      17

An empirical validation of the approach has been performed on four non-trivial case studies. We 
measured recall (there were few false negatives except in one case), precision (there were various false 
positives but noise did not bothered too much), effort (visual inspection of potential clones did not take 
more than one workday), and the refactoring opportunities (there were many simple changes that could 
be applied to eliminate duplication). We also took the chance to remove function clones in the web 
application for which there were more duplicates: refactoring took one person/day with very few 
cloned script functions left out in the code.  

The results obtained from the case studies show the potential of the semiautomated approach for 
identifying function clones in web applications, and its usefulness for the goal of verification, to 
prevent clone from spreading, or for the goal of refactoring, to remove redundancy and shrink 
application size. 

However, that we found a high number of function clones does not mean that we were able to 
identify most of code duplication. In fact, our approach looks for clones at the function level but it 
does not detect duplicated code at lower granularity levels. Thus, our approach would not provide so 
much help to those web programmers who fail to employ user-defined functions for performing 
specific tasks. Nevertheless, the proposed approach has the merit to keep clone detection for web 
applications simple but effective. Simplicity is a key design principle which has inspired the 
development of the World Wide Web [7] as well as of the whole Internet [9]. 

Our approach might be refined, analogously to [4, 13, 15], by developing specific redesign 
patterns for web applications to provide a guide to duplication removal. The automatic selection of 
potential clones could also be extended to other web enabling technologies, such as Java Server Pages 
or PHP.  

Our future plans also include to use the proposed approach as an instrument to study the evolution 
and decay of web applications through time. 

Acknowledgements 

We would like to thank Vincenzo Fiorentino and Biagio Taccogna for having helped to implement 
a preliminary version of the eMetrics tool. We are also grateful to the anonymous reviewers for their 
helpful improvement suggestions. 

References 
1. Antoniol, G., Villano, U., Merlo, E. and Di Penta, M. Analyzing cloning evolution in the Linux 

kernel. Information and Software Technology 2002, 44(13). 755–765. 
2. Antoniol, G., Casazza, G., Di Penta, M. and  Merlo, E. Modeling Clones Evolution Through Time 

Series. in International Conference on Software Maintenance, (Florence, Italy, 2001). 273-280. 
3. Baker, B.S. On Finding Duplication and Near-Duplication in Large Software Systems. in Second 

Working Conference on Reverse Engineering, (Toronto, Canada, 1995). 86-95. 
4. Balazinska, M., Merlo, E., Dagenais, M., Lague, B. and Kontogiannis, K. Partial Redesign of Java 

Software Systems Based on Clone Analysis. in Sixth Working Conference on Reverse 
Engineering, (Atlanta, USA, 1999). 326-336. 

5. Balazinska, M., Merlo, E., Dagenais, M., Lague, B and Kontogiannis, K. Measuring Clone Based 
Reengineering Opportunities. in Sixth IEEE International Symposium on Software Metrics, (Boca 
Raton, USA, 1999). 292-303. 

6. Baxter, I.D., Yahin, A., Moura, L., Santa Anna, M. and Bier, L. Clone Detection Using Abstract 
Syntax Trees. in International Conference on Software Maintenance, (Washington DC, USA, 
1998). 368-377. 

 



 18      Function Clone Detection in Web Application: A Semiautomated Approach 
 
7. Berners-Lee, T. Principles of Design. 1998, last change: January 2002. 

http://www.w3.org/DesignIssues/Principles.html 
8. Boldyreff, C. and Kewish, R. Reverse Engineering to Achieve Maintainable WWW Sites. in Eight 

Working Conference on Reverse Engineering (WCRE’01), (Stuttgart, Germany, 2001). 249-257. 
9. Carpenter, B (Ed.). Architectural Principles of the Internet. RFC 1958, June 1996. 

http://www.ietf.org/rfc/rfc1958.txt 
10. Conallen, J. Building Web Applications with UML. Addison-Wesley: Reading, MA, 2000. 
11. Di Lucca, G.A., Di Penta, M., Fasolino, AR. and Granato, P. Clone Analysis in the Web Era: an 

Approach to Identify Cloned Web Pages. in Seventh IEEE Workshop on Empirical Studies of 
Software Maintenance. (Florence, Italy, 2001). 107-113. 

12. Ducasse, S., Rieger, M. and Demeyer, S. A Language Independent Approach for Detecting 
Duplicated Code. in International Conference on Software Maintenance, (Oxford, U.K., 1999). 
109-118. 

13. Fanta, R. and Rajlich, V. Removing Clones from the Code. Journal of Software Maintenance: 
Research and Practice 1999, 11(4). 223–243. 

14.  Fioravanti, F., Migliarase, G. and Nesi, P. Reengineering Analysis of Object-Oriented Systems via 
Duplication Analysis. in International Conference on Software Engineering, (Florence, Italy, 
2001); 577-590. 

15. Fowler, M. Refactoring: Improving the design of existing code. Addison-Wesley: Reading, MA, 
1999. 

16. Johnson, J.H. Identifying Redundancy in Source Code using Fingerprints. in CAS Conference. 
(Toronto, Canada, 1993). 171–183. 

17.  Johnson, J.H. Substring Matching for Clone Detection and Change Tracking. in Proceedings 
International Conference on Software Maintenance, (Victoria, Canada, 1994). 120-126. 

18. Kamiya, T., Kusumoto, S. and Inoue, K. CCFinder: A Multilinguistic Token-Based Code Clone 
Detection System for Large Scale Source Code. IEEE Transactions On Software Engineering 
2002, 28(7). 654–670. 

19. Kontogiannis, K. Evaluation Experiments on the Detection of Programming Patterns Using 
Software Metrics. in Fourth Working Conference on Reverse Engineering, (Amsterdam, The 
Netherlands, 1997); 44-54. 

20. Krinke, J. Identifying Similar Code with Program Dependence Graphs. in Eighth Working 
Conference on Reverse Engineering,   (Stuttgart, Germany, 2001). 301-309. 

21. Lague, B., Proulx, D., Mayrand, J., Merlo, E.M. and Hudepohl, J. Assessing the Benefits of 
Incorporating Function Clone Detection in a Development Process. in International Conference on 
Software Maintenance, (Bari, Italy, 1997). 314-321. 

22. Lanubile, F. and Mallardo, T. Tool Support for Distributed Inspection. in Proceedings 26th 
Annual International Computer Software & Applications Conference, (Oxford, U.K., 2002). 1071-
1076. 

23. Lanubile, F. and Mallardo, T. Finding Function Clones in Web Applications. in Seventh European 
Conference on Software Maintenance and Reengineering, (Benevento, Italy, 2003). 379-388. 

24. Manber, U. Finding Similar Files in a Large File System. in USENIX Winter 1994 Technical 
Conference. (San Francisco, USA, 1994). 1-10. 

25. Mayrand, J., Leblanc, C., Merlo, E.M. Experiment on the Automatic Detection of Function Clones 
in a Software System Using Metrics. in International Conference on Software Maintenance, 
(Monterey, USA, 1996). 244-254. 

26. Microsoft, Exchange 2000 Conferencing Server. Available: 
http://www.microsoft.com/exchange/techinfo/conferencing/ [Accessed January 2004]. 

27. Parnas, D.L. Software Aging. in 16th International Conference on Software Engineering, 
(Sorrento, Italy, 1994). 279-287. 

28. Patenaude, J.F., Merlo, E.M., Dagenais, M. and Lague, B. Extending Software Quality 
Assessment Techniques to Java Systems. in Seventh International Workshop on Program 
Comprehension, (Pittsburgh, USA, 1999). 49-57. 

  



 F. Calefato, F. Lanubile  and T. Mallardo      19

29. Pressman, R.S., Lewis, T., Adida, B., Ullman, E., DeMarco, T., Gilb, T., Gorda, B., Humphrey, 
W. and Johnson, R. Can Internet-Based Applications Be Engineered? IEEE Software 1998, 15(5). 
104–110. 

30. Ricca, F. and Tonella, P. Using Clustering to Support the Migration from Static to Dynamic Web 
Pages. in of the 11th International Workshop on Program Comprehension, (Portland, USA, 2003). 
207-216.  

31.  Rieger, M. and Ducasse, S. Visual Detection of Duplicated Code. in Workshop on Experiences in 
Object-Oriented Re-Engineering. (Brussels, Belgium, 1998). 75-76. 

32. Snitz Forums 2000, Product Specifications and Downloads. Available: 
http://forum.snitz.com/spec.asp [Accessed January 2004]. 

33. van Rijsbergen C. Information Retrieval. Butterworths: London, UK. 1979. 
34. Web Wiz Guide, Web Wiz Forums Downloads. Available: 

http://www.webwizguide.info/web_wiz_forums/forum_download.asp [Accessed January 2004]. 
35. Xcent, QuickAuction. Available: http://www.xcent.com/products/QuickAuction.htm [Accessed 

January 2004].  
 

 


