
Augmenting Social Awareness in a Collaborative Development Environment
Fabio Calefato

Dipartimento di Informatica
Università degli Studi di Bari “A. Moro”

Bari, Italy
calefato@di.uniba.it

Filippo Lanubile
Dipartimento di Informatica

Università degli Studi di Bari “A. Moro”
Bari, Italy

lanubile@di.uniba.it

Abstract—Social awareness, that is information that a person
maintains about others in a social or conversational context,
can contribute to counteract the lack of teamness in global
software development and strengthen trust among remote
developers. We hypothesize that information shared on social
media can work for distributed software teams as a surrogate
of the social awareness gained during informal face to face
chats. As a preliminary step we have developed a tool that
extends a collaborative development environment by
aggregating content from social networks and microblogs into
the developer’s workspace.

Keywords-trust building; collaborative development
environment; social awareness; social networks

I. INTRODUCTION
Social awareness is the information that a person

maintains about others in a social or conversational context
[9]. Although acknowledged only recently, social awareness
can contribute to the success of globally distributed projects
by strengthening trust [11] [12], more specifically, affective
trust. From an affective perspective, trust is defined as the
reciprocal emotional ties, concerns, and care that morally
push the trustee to do something for the trustor [10] [15].

Treinen & Miller-Frost [14] reported on several case
studies where the development of mutual trust between
distant sites at the beginning of a project was more important
than the resolution of technical issues. Al-Ani & Redmiles
[2] identified both technical and socio-emotional leadership
among the positive forces acting on trust building in large
software organization. Costa et al. [6] observed that, on a
monthly basis, 25% of new coordination requirements of
large-scale distributed projects involve members who do not
often work together and have insufficient time to establish
social connections. DiMicco et al. [8] analyzed the
professional use of a social network within IBM to find that
people did not connect to proximate colleagues with whom
they communicated on a regular basis, but rather with
employees they did not know well, to build stronger ties.
Consistently, Ali-Hassan et al. [1] found evidence that
publishing personal information, photos, and so on in the
workplace lead people to build new ties in their networks.
Bradner & Mark [5] observed that the distance of a
collaborating partner affects the willingness to initially
cooperate, as well as the willingness to deceive and the
ability to persuade partners. Such effects, however, were
observed only when people believed that partners lived
nearby since it is feeling close, rather than actually being
close, that has a trust-building effect. Shami et al. [13]

observed that, when seeking help, participations in social
software and social closeness (i.e., being a friend of a friend)
account more than technical skills, since people prefer to
avoid cold calls and contact other people who are more likely
to respond. Finally, Bougie et al. [4] found that microblogs
are successfully used in software engineering projects
because of the little costs of displaying and monitoring
actions through “tweets”, thanks to their short, fixed length.

The problem with trust building is that it typically grows
through close interaction and face-to-face (F2F) chats.
However, F2F interaction is also the very activity that global
teams see reduced, due to distance. Therefore, to date the
following research question still remains open: How do we
strengthen or build trust among developers of globally
distributed teams who have few or no chances to meet?

Previous research provides some initial evidence to
support the hypothesis that information shared on social
media can work for distributed software teams as a surrogate
of the social awareness gained during informal face-to-face
chats. Therefore, there is a need for tools that support sharing
personal and contextual information to increase the
likelihood of successful interactions.

II. SOCIALTFS
Collaborative Development Environments (CDEs), also

known as Application Lifecycle Management (ALM)
platforms, are project workspaces with a standardized toolset
for software teams (e.g., tracker, version control, dashboard,
and event notification). The name was first coined by Booch
& Brown [1], who envisioned collaborative features to be
available as extensions of the core toolset that would
increase users’ comfort and productivity.

Although to different extents, all the largest and most
used CDEs available today, such as Google Code, Rational
Team Concert, and Trac, support group-structural and
informal awareness. Instead, social awareness is partially
supported only by GitHub, which allows its users to directly
follow the developer’s connections like in a person-centered
social network, such as Google+ or Twitter.

SocialTFS (Figure 1a) is a tool developed as an extension
of Visual Studio and Team Foundation Server (TFS) to
aggregate teammates’ content from social software into the
Microsoft CDE. SocialTFS includes three main components.
The client component, which is realized as a Visual Studio
plugin, handles the visualization of all the social content
collected from the services enabled by a user. The server side
component builds on the ServerObjectModel API of TFS
and its main duty is notifying events and workspace changes

to the other components via web service protocols, such as
REST or SOAP. The third component, called Social Proxy
Server, is an aggregator that accesses the API of corporate
microblogs and social networking websites. Being a proxy, it
interacts both with the SocialTFS client and with TFS via the
HTTP/REST protocol. It builds on the ClientObjectModel
API of TFS and its main duties are retrieving information
about registered users from social network services (SNSs)
and about software projects from CDEs. To make this
possible, the Social Proxy Server stores user credentials and
caches posts on behalf of users, who give authorization on
the first access through OAuth, an authorization protocol
used by most social software services. Other than accessing
SNSs, the proxy can also handle and store connection data
for both TFS corporate installations and CodePlex, which is
a public TFS installation where Microsoft hosts open source
projects. Finally, the Social Proxy Server runs as a web site
(it requires Internet Information Services) and comes with an
administration panel, where an administrator handles all the
configuration, such as what SNS to enable (e.g., Twitter, but
not Facebook; the URL to access the corporate microblog
installation) and where TFS and its components are deployed
(e.g., the URL to access the SQLServer installation).

Figure 1b shows the services currently available in
SocialTFS as of this writing. They include CodePlex and
TFS as supported CDEs, Twitter, Yammer and StatusNet
(both public and corporate) as microblogs, and finally
Facebook and LinkedIn, with Google+ scheduled for the
upcoming iteration. As for the SNSs, SocialTFS allows a
user to specify what information can retrieve from the
account. In Figure 1c, access rights for Facebook are shown.
In particular, the Social Proxy Server component is allowed
to retrieve and store the list of mutual friends that one has
(i.e., both the followings and the followers) and the profile
picture, but none of the posts shared. Access rights are
specific for each service. For instance, in the case of

LinkedIn a user is also asked to give access to his/her skills
as reported on the site.

As mentioned before, social content is loaded and cached
by the Social Proxy Server component. Then, all the
information is requested by the SocialTFS client and
presented to the end user in a view within the Visual Studio
IDE. Such information is shown through three different
timelines, namely home, iteration, and interactive.

The home timeline in SocialTFS resembles the timeline
available in microblogging sites, such as Twitter or Yammer,
as it gets populated by the posts from the current user and
those from the his/her followings. To avoid cold start
problems, SocialTFS incorporates a recommender system
that suggests whom to follow. We call this type of
followings static, because an explicit follow/unfollow action
is required to add or remove someone from one’s awareness
network, that is, the set of people whose actions one
monitors and to whom one’s actions are displayed. However,
de Souza & Redmiles [7] have found that an awareness
network is fluid and changes over time, depending on task
assignments or the software development phases. Therefore,
other than visualizing the stream of static followings in the
home timeline, we also designed a dynamic type of
following.

Unlike static followings, dynamic followings do not
require any explicit follow/unfollow action, as they are
automatically added to and removed from a user’s awareness
network, depending on the two different conditions detailed
below. The first condition relates to the changes occurring to
users’ assignments in the current iteration. If, for example,
Fabio reported or commented on a work item assigned to
Nicola, he will be able to see Fabio’s posts in the so-called
iteration timeline. The work items considered are only those
in active or fixed state in the iteration at hand. The second
condition relates to actions performed by a user within
Visual Studio.

a) b) c)
Figure 1. SocialTFS user interface (a), available SNS and microblog services (b). and customization of access rights (c).

In fact, the interactive timeline displays posts from

dynamic followings “inferred” from the artifact (i.e., a work
item or a source code file) shown in the focused tab of the
main editor of the IDE. If, for example, Peppe is editing a
file that has been committed by Filippo, he will appear as a
dynamic following in Peppe’s interactive timeline.

III. CONCLUSIONS & FUTURE WORK
In this paper we have presented SocialTFS, an extension

that augments a collaborative development environment by
aggregating content from multiple social media into the
developer’s workspace. The tool has been developed to
support our hypothesis that information shared on SNSs and
microblogs can work as a surrogate of the social awareness
gained during informal chats, thus helping to build trust
among members of global teams. As a future work, we
intend to conduct case studies to empirically test our
hypothesis in large scale industrial projects.

ACKNOWLEDGMENT
The work reported in this paper is currently funded by

the European Territorial Cooperation Operational
Programme “Greece-Italy 2007-2013” under the project
Intersocial. SocialTFS has got the 2011 Software
Engineering Innovation Foundation (SEIF) Award from
Microsoft Research in the 2011 competition.

REFERENCES
[1] H. Ali-Hassan, D. Nevo, H.M. Kim, and S. Perelgut. “Organizational

Social Computing and Employee Job Performance: The Knowledge
Access Route,” Proc .HICSS 2011, Hawaii, pp.1-10.

[2] B. Al-Ani and D. Redmiles, “In Strangers We Trust? Findings of an
Empirical Study of Distributed Teams,” Proc. ICGSE 2009, Limerick,
Ireland, Jul. 13-16, pp. 121-130.

[3] G. Booch and A.W. Brown, “Collaborative Development
Environments”, Advances in Computers, 59, Academic Press, 2003.

[4] G. Bougie, J. Starke, M.A. Storey, and D.M. German, “Towards
Understanding Twitter Use in Software Engineering: Preliminary
Findings, Ongoing Challenges and Future Questions.” Proc.
Web2SE’11, 2011.

[5] M. Bradner and G. Mark, “Why Distance Matters: Effects on
Cooperation, Persuasion and Deception. Proc. CSCW’02, 2002.

[6] J.M.R. Costa, M. Cataldo, and C.R.B. de Souza, “The Scale and
Evolution of Coordination Needs in Large-Scale Distributed Projects:
Implications for the Future Generation of Collaborative Tools”, Proc.
CHI’11, 2011.

[7] C.R.B. de Souza and D.F. Redmiles “The Awareness Network, To
Whom Should I Display My Actions? And, Whose Actions Should I
Monitor?” IEEE Trans. on Sw Eng, 37(3), 2011.

[8] J. DiMicco, D.R. Millen, W. Geyer, C. Dugan, B. Brownholtz, and
M. Michael, “Motivations for Social Networking at Work”, Proc.
CSCW’08, 2008.

[9] Gutwin, C., Greenberg, S., Roseman, M.. Workspace Awareness in
Real-Time Distributed Groupware: Framework, Widgets, and
Evaluation. HCI 1996

[10] S.L. Jarvenpaa, K. Knoll, and D.E. Leidner, “Is anybody out there?:
antecedents of trust in global virtual teams,” Journal of Manage. Inf.
Syst. 14(4), pp. 29-64, 1998.

[11] J. Marlow and L. Dabbish, “Designing interventions to reduce
psychological distance in globally distributed teams”. In Int’l Conf.
Computer Supported Cooperative Work (CSCW '12), Seattle, WA,
USA, Feb. 11-15, 2012, pp. 163-166.

[12] H. Robinson and H. Sharp, “Organizational culture and XP: three
case studies,” Proc. Agile ’05, 2005.

[13] N.S. Shami, K. Ehrlich, G. Gay, and J.T. Hancock, “Making Sense of
Strangers’ Expertise from Signals in Digital Artifacts,” Proc. CHI’09,
2009.

[14] J.J. Treinen and S.L. Miller-Frost, “Following the sun: case studies in
global software development”, IBM Syst. J. 45(4), Oct. 2006, pp.
773-783.

[15] J.M. Wilson, S.G. Strausb, and B. McEvily, “All in due time: The
development of trust in computer-mediated and face-to-face teams”,
Organizational Behavior and Human Decision Processes, 99(1), pp.
16–33, Jan. 2006.

