

Global Software and IT

A Guide to Distributed Development,
Sourcing, and Outsourcing

Christof Ebert
2010

Global Software and IT DRAFT – DO NOT DISCLOSE 2 / 44

1 Case Study: Collaborative Development Environments

Authors: Fabio Calefato and Filippo Lanubile, University of Bari

Motivation

This chapter provides a case study from different companies and shows how to best use
tools in globally distributed software projects. The case study highlights relevant themes and
guidance from previous chapters in a concrete project context. It offers valuable insights
towards how to do things in your own company.
Adequate tool support is paramount to enable collaboration between team members and to
control the overall development process. This is especially true in global software engineering
because of distance [Herbsleb01]. Distance has an impact on the three main forms of
cooperation within a team [Carmel01]: communication coordination, and control.
Communication is the exchange between the members of information, whether formal or
informal, occurring in planned or impromptu interaction. Coordination is that act of
orchestrating each task and organizational unit, so that they all contribute to the overall
objective. Control is the process of adhering to goals, policies, standards or quality levels, set
either formally (e.g., formal meetings, plans, guidelines) or informally (e.g., team culture, peer
pressure). Distributed teams create further burdens on communication, coordination and
control mechanisms, primarily the informal ones.
Due to distance, people cannot coordinate and control by just visiting the other team
members. The absence of management-by-walking can result in coordination and control
issues, like misalignment and rework. When control and coordination needs of distributed
software teams rise, so does the load on all communication channels available. In fact,
software projects have two complementary communication needs. First, the more formal,
official communications is used for crucial tasks like updating project status, escalating
project issues, and determining who has responsibility for particular work products. Secondly,
informal ‘corridor talk’ allows team members to keep a ‘peripheral awareness’ of what is
going on around them, what other people are working on, what states the various parts of the
project are in, and many other essential pieces of background information that enable
developers to work together efficiently. In colocated settings, communication is taken for
granted and then, its importance often goes unnoticed. When developers are not located
together, they have much less opportunities of communication. There is empirical evidence
that the frequency of communication drops off with the physical separation among
developers’ sites [Herbsleb03]. Therefore, distance exacerbates coordination and control
problems directly or indirectly through its negative effects on communication. In other words,
communication disruption due to distance further increases and aggravates coordination and
control breakdowns [Carmel01].
Distance can have an effect on three distinct dimensions: geographical, temporal, and socio-
cultural. Geographical distance is a measure of the spatial dispersion, occurring when team
members are scattered across different sites. It can be operationalized as the cost or effort
required to exchange visits from one site to another. Temporal distance is a measure of the

 2013, Christof Ebert to print Version 0.20 of 2010-08-28

Global Software and IT DRAFT – DO NOT DISCLOSE 3 / 44

temporal dispersion, occurring when team members wishing to interact. It can be caused by
time-zone differences or just time shifting work patterns (e.g., one site having a quick lunch
break at noon and another site a two-hour lunch time at 1:00 pm). Socio-cultural distance is a
measure of the effort required by team members to understand the organizational and
national cultures (e.g., norms, practices, values, spoken languages) in remote sites.
Cooperation difficulties due to distance can only be partially tackled using appropriate
techniques. For instance, coordination and control issues can be counteracted, respectively,
adopting architectural frameworks that enable a better division of labor between teams, and
choosing an agile development process. However, global development would not just be
feasible without adequate tool support [Ebert06]. In fact, developers need constant tool
support during the whole software life-cycle, in order to model, design, and test software
functionalities, manage a myriad of interdependent artifacts, and communicate with each
other. In the next section we present a number of tools and collaborative development
environments that are available today to enable effective global software development.

Background

Tools provide a considerable help to software development activities. Software engineering
tools to assist distributed projects may fall into the following categories: software
configuration management, bug and change tracking, build and release management,
modelers, knowledge centers, communication tools, and collaborative development
environments.
A software configuration management (SCM) tool includes the ability to manage change in a
controlled manner, by checking components in and out of a repository, and the evolution of
software products, by storing multiple versions of components, and producing specified
versions on command. SCM tools also provide a good way to share software artifacts with
other team members in a controlled manner. Rather than just using a directory to exchange
files with other people, developers can use an SCM tool to be sure that interdependent files
are changed together and control who is allowed to make changes. Further, SCM tools make
it possible to save messages about what changed and why. Open-source SCM tools have
become indispensable tools for coordinating the interaction of distributed developers. Until
early 2000s, the world of SCM tools has been quite stale [O'Sullivan09]. Released in 1990,
Concurrent Version System (CVS)1 is the ancestor of the many open source SCM tools
available today and, despite of some severe drawbacks (e.g., limitations in renaming and
deleting folders), it is still in wide use today although as a legacy system. Subversion (SVN)2
came out a decade after CVS with the goal of overcoming the negative aspects of CVS. Both
SVN and CVS adopt a centralized, client-server approach. A single central server hosts all
project’s metadata. Developers check out from the central server a limited view of the data
on their local machines. In early 2000s, however, a number of projects (e.g., Git3, Mercurial4,
and Darcs5) were started to develop distributed SCM tools that operate in a peer to peer
manner..

1 http://www.nongnu.org/cvs/
2 http://subversion.tigris.org/
3 http://git-scm.com/
4 http://mercurial.selenic.com/wiki/
5 http://darcs.net/

 2013, Christof Ebert to print Version 0.20 of 2010-08-28

Global Software and IT DRAFT – DO NOT DISCLOSE 4 / 44

Bug and change tracking is centered around a database, accessible by all team members
through a web-based interface. Other than an identifier and a description, a recorded bug
includes information about who found it, the steps to reproduce it, who has been assigned on
it, which releases the bug exists in and it has been fixed in. Bug tracking systems, such as
Bugzilla6 and JIRA7, also define a life-cycle for bugs to help team members to track the
resolution of defects. Trackers are a generalization of bug tracking systems to include the
management of other issues such as feature requests, support requests, or patches.
Build and release management allows projects to create and schedule workflows that
execute build scripts, compile binaries, invoke test frameworks, deploy to production systems
and send email notifications to developers. The larger the project, the greater the need for
automating the build and release function. Build and release management tools can also
provide a web-based dashboard to view the status of current and past builds (Fig. 1). Build
tools, such as CruiseControl8 and its ancestor like the UNIX make utility, are essential tools
to perform Continuous Integration [Fowler06], an agile development practice which allows
developers to integrate daily thus reducing integration problems.

Fig. 1: Project build information within a dashboard

Model-based collaboration is what distinguishes collaborative software engineering from
more general collaboration activities which only share files and not content [Whitehead07].
Collaborative modeling tools such as Artisan Studio9, Rational Software Modeler10 and
Visible Analyst11 help developers to create formal or semiformal software artifacts including
visual UML modeling software artifacts and customized software processes.
Product and process modeling encompasses the core features of what was called Computer
Aided Software Engineering (CASE), from requirements engineering to visual modeling of
both software artifacts and customized software processes. Collaboration in software
development tends to be around the creation of formal or semiformal software artifacts.
According to [Whitehead07], model-based collaboration is what distinguishes software
engineering collaboration from more general collaboration activities which lack the focus on
using the models to create shared meanings.
Knowledge centers are mostly document-driven and web-enabled, and allows team members
to share explicit knowledge across a work unit. A knowledge center includes technical
references, standards, frequently asked questions (FAQs) and best practices. Using wiki

6 http://www.bugzilla.org/
7 http://www.atlassian.com/software/jira/
8 http://cruisecontrol.sourceforge.net/
9 http://www.artisansoftwaretools.com/products/
10 http://www-01.ibm.com/software/awdtools/modeler/swmodeler/
11 http://www.visible.com/Products/Analyst/

 2013, Christof Ebert to print Version 0.20 of 2010-08-28

http://www.atlassian.com/software/jira/

Global Software and IT DRAFT – DO NOT DISCLOSE 5 / 44

software for collaborative web publishing has emerged as a practical and economical option
to consider for creating and maintaining group documentation. Wikis are particularly valuable
in distributed projects as global teams may use them to organize, track, and publish their
work [Louridas06]. Fig. 2 shows the home page of the Fedora project wiki where both
developers and users may contribute other than find information. Knowledge centers may
also include sophisticated knowledge management activities to acquire tacit knowledge in
explicit forms, such as expert identification and skills management [Rus02].
Communication tools increase productivity in global teams. Software engineers have adopted
a wide range of mainstream communication technologies for project use in addition or
replacement of communicating face-to-face by speech. Asynchronous communication tools
include email, mailing lists, newsgroups, web forums and blogs; synchronous tools include
the classic telephone and conference calls, chat, instant messaging, voice over IP, and
videoconferencing. Email is the most-widely used and successful collaborative application.
Thanks to its flexibility and ease of use, email can support conversations, but also operate as
a task/contact manager. However, one of the drawbacks of email is that, due to its success,
people tend to use email for a variety of purposes and often in a quasi-synchronous manner.
In addition, email is ‘socially blind’ [Erickson00] in that it does not enable users to signal their
availability. Before becoming an indispensable tool ubiquitous in every workplace, email was
initially used by the niche of research community and opposed by management. Likewise,
chat and instant messaging have followed a similar evolution path. At first mostly used by
young people for exchanging ‘social’ messages, these synchronous tools have spread more
and more in the workplace. While email is socially blind, these tools, in contrast, provide a
lightweight means to ascertain availability of remote team members and contact them in a
timely manner.

Communication in distributed development can be supported by providing
stakeholders with a variety of different options. Do not expect one tool to fit all.
Many sites involved mean many different culture, habits, most of all, language
skills.

Fig. 2: Fedora Project documentation based on wiki

 2013, Christof Ebert to print Version 0.20 of 2010-08-28

Global Software and IT DRAFT – DO NOT DISCLOSE 6 / 44

General communication tools (i.e., non software engineering specific) fall in the category of
‘groupware’ which refers to the class of applications that support groups of people engaged
in performing a common task [Ellis91]. However, the term groupware is nowadays almost
disused in favor of preferred wordings such as ‘collaborative software’, ‘social software,’ or
‘Web 2.0’ [Murugesan07], which also include systems used outside the workplace (e.g.,
blogs, wikis, instant messaging).
Interoperability and a familiar user interface provide strong motivations to integrate task-
specific solutions and generic groupware into collaborative development environments
(CDE). A CDE provides a project workspace with a standardized toolset to be used by the
global software team. Earliest CDE were developed within open source software (OSS)
projects because OSS projects, from the beginning, have been composed of dispersed
individuals. Today a number of CDE are available as commercial products, open source
initiatives or prototypes to enable distributed software development.
SourceForge12is the most popular CDE with over 230.000 hosted projects and 2 million
registered users, as of this writing. The original mission of SourceForge was to enrich the
open source community by providing a centralized place for developers to control and
manage OSS projects. SourceForge offers a variety of free services: web interface for
project administration, space for web content and scripts, trackers (for reporting bugs,
submitting support requests or patches to review, and posting feature requests), mailing lists
and discussion forums, download notification of new releases, shell functions and compile
farm, and supports CVS, Subversion, Git, Mercurial, and Bazaar13 configuration management
tools. Fig. 3 shows the personal page of the author which provides access to a standard
toolset which can be used on every project. The commercial versions for corporate use,
called SourceForge Enterprise Edition and CollabNet Enterprise Edition, add features for
tracking, measuring and reporting on software project activities.

Fig. 3: Personal SourceForge portal

GForge14 is a fork of the SourceForge.net project. It has been downloaded and configured as
in-house server by many industrial and academic organizations (see Fig. 4). Like
SourceForge it also offers a commercial version, called GForge Advanced Server. It supports

12 http://sourceforge.net/
13 http://bazaar.canonical.com/
14 http://gforge.org/projects/gforge/

 2013, Christof Ebert to print Version 0.20 of 2010-08-28

Global Software and IT DRAFT – DO NOT DISCLOSE 7 / 44

CVS, Subversion, and Perforce15 configuration management tools. A notable feature of
GForge is the integration with the CruiseControl build tool.
Ohloh16 is an online community platform built upon a web services suite. Its aim is to map the
status of OSS development world by retrieving data from public CDEs (Fig. 5). As such,
Ohloh provides statistics about projects longevity, licenses, and software measurements,
such as source lines of code and commit statistics, so as to inform about the amount of
activity for each project. It also allows evaluating trend popularity of specific programming
languages through global statistics per language measures. Contributor statistics are also
available, meant to measure developers' own experience on the basis of commit statistics
and mutual ratings (in form of "kudos" received from other developers in the community). As
of January 2010, Ohloh counts over 440,000 members and lists over 430,000 projects.

Fig. 4: A GForge-based CDE

Trac17 is a CDE that combines an integrated wiki, an issue tracking system and a front-end
interface to SCM tools, usually Subversion, although it supports a number of other
configuration management tools through plug-ins. Also CruiseControl can be integrated via
plug-ins to support source code building. Project overview and progress tracking is allowed
by setting a roadmap of milestones, which include a set of so-called “tickets” (i.e., tasks,
feature requests, bug reports and support issues), and by viewing the timeline of changes.
Trac also allows team members to be notified about project events and ticket changes
through email messages and RSS feeds. Fig. 6 shows a screenshot of a project with active
tickets grouped by milestone and colored to indicate different priorities.

15 http://www.perforce.com/
16 http://www.ohloh.net/
17 http://trac.edgewall.org/

 2013, Christof Ebert to print Version 0.20 of 2010-08-28

Global Software and IT DRAFT – DO NOT DISCLOSE 8 / 44

Fig. 5: Ohloh’s statistics non Mozilla Firefox code base

Fig. 6: Active tickets in Trac grouped by milestone

Google Code18 is a Google application that offers a project hosting service with revision
control (only SVN and Mercurial are supported), issue tracking, a wiki for documentation, and
a file download features (Fig. 7). Google code service is free for all OSS projects that are
licensed under one of the following nine licenses: Apache, Artistic, BSD, GPLv2, GPLv3,
LGPL, MIT, MPL, and EPL. The site also limits the maximum number of projects that a single
developer can create.

18 http://code.google.com/

 2013, Christof Ebert to print Version 0.20 of 2010-08-28

Global Software and IT DRAFT – DO NOT DISCLOSE 9 / 44

Fig. 7: An example of project summary page in Google Code

Assembla19 is yet another CDE service for both open source and commercial software (Fig.
8). Other than offering the most common features of a typical CDE, Assembla distinguishes
itself from other environments for a few noticeable aspects, namely the chance to choose
between SVN, Git, and Mercurial for software configuration management, the notification of
changes also available via Twitter, and the support offered to teams adopting an agile
development process for running Scrum meetings [Schwaber01].

Fig. 8: Active tickets in Assembla grouped by milestone

Jazz [Frost07] is an extensible platform which leverages the Eclipse notion of plug-ins to build
specific CDE products like the IBM Rational Team Concert20 (Fig. 9). The present version
has a wide-ranging scope but in the former version of Jazz [Cheng04, Hupfer04] the goal
was to integrate synchronous communication and reciprocal awareness of coding tasks into
the Eclipse IDE. The development of Jazz has been inspired to the Booch and Brown’s vision
of a “frictionless surface” for development [Booch03], which was motivated by the

19 http://www.assembla.com/
20 http://www-01.ibm.com/software/awdtools/rtc/

 2013, Christof Ebert to print Version 0.20 of 2010-08-28

Global Software and IT DRAFT – DO NOT DISCLOSE 10 / 44

observation that much of the developers’ effort is wasted in switching back and forth between
different applications to communicate and work together. According to this vision,
collaborative features should be available as components that extend core applications (e.g.,
the IDE), thus increasing the users’ comfort and productivity. Jazz uses a proprietary source
code management solution, which can also be replaced by other common SCM tools (e.g.,
SVN and Git). The Jazz client is a rich client application, called Rational Team Concert (see
Fig. 9), which is built upon the Eclipse RCP platform. Other than the development-specific
features, Jazz also offers a built-in RSS reader and integrates with Lotus Sametime and
Google Talk instant messaging networks. Jazz repositories can also be accessed using a
browser, thanks to the Jazz Rest API, which exposes and makes accessible all the core
services from the Web.
GitHub21 is a CDE service that describes itself as a “social network for programmers” (Fig.
10). Alike the other CDEs mentioned before, GitHub hosting service only offers Git as source
code management to both open source and commercial software projects. However, GitHub
also aims to foster developers’ collaboration by letting them fork projects through Git, sending
and pulling requests, and monitoring development through a twitter-like, "follow-this-project"
approach. As of October 2009, GitHub community counts over 135,000 developers.

Fig. 9: A screenshot of the Jazz client Rational Team Concert

Finally, to conclude this section, we mention some other noticeable CDEs, such as
Launchpad22, well known for hosting the Ubuntu project; GNU Savannah23, the central point
for the development of most GNU software; Tigris24 which is a CDE specialized on hosting
open source software engineering tools; CodePlex25, Microsoft’s recent take on collaborative
open source development.

21 http://github.com/
22 https://launchpad.net/
23 http://savannah.gnu.org/
24 http://www.tigris.org/
25 http://www.codeplex.com/

 2013, Christof Ebert to print Version 0.20 of 2010-08-28

Global Software and IT DRAFT – DO NOT DISCLOSE 11 / 44

Fig. 10: Main page of Ruby on Rails project in GitHub

Web 2.0 extends traditional collaborative software by means of direct user contribution, rich
interaction, and community building. Some key Web 2.0 applications are blogs, microblogs,
wikis, social networking sites, and collaborative tagging systems. The use of Web 2.0
applications has become quite common in open source and global software projects as they
represent a valuable means to increase the amount of informal communication exchanged
between team members. For example, wiki platforms, such as Confluence26, have emerged
as a practical and economical option to consider for creating and maintaining group
documentation [Louridas06].

Results

This section provides some anecdotes on how the most significant reviewed tools are
practically used.
The idea of adopting no SCM in a distributed project is out of question. Instead, reasons in
favor of selecting either a centralized or distributed code repository should be identified. In
general, distributed SCM tools are the preferred choice when developers need to travel often,
for example, to work remotely at customer sites, because such tools deal with merging the
changes pulled from developers’ repositories much better than centralized tools
[O'Sullivan09]. Distributed SCM gained popularity in 2002 when Linus Torvalds took the
controversial decision of using BitKeeper, a proprietary, closed source tool by BitMover Inc.,
for supporting the Linux kernel development, the pinnacle of free open source software.
However, in 2005, when BitMover announced that it would stop providing a version of the tool
free of charge to the community. Thus, Torvalds decided to start the develop a new
distributed SCM, which later became Git, as none of the available free systems met his
needs, particularly the requirements on performance and safeguards against data corruption,
either accidental or malicious. Because distributed SCM tools have been designed with the
purpose of making repositories merge a routine operation, they are in general much more
performing than centralized counterparts at computing diffs and applying patches. Such
difference in performance increases as the number of files in a repository reaches tens of

26 http://www.atlassian.com/software/confluence/

 2013, Christof Ebert to print Version 0.20 of 2010-08-28

Global Software and IT DRAFT – DO NOT DISCLOSE 12 / 44

thousands or more. Therefore, the adoption distributed SCM tools is highly recommended for
managing very large projects.
Tracking bugs and other issues in a project is as important as code development. When
Mozilla organization first came online in 1998, one of the first products that was released was
Bugzilla, an open source bug system implemented to replace the in-house system then in
use at Netscape. Only upon creating the bug repository, the people involved in the project
could move onto the development of the new browser. Since the birth of Bugzilla, a bug is not
actually a bug until it has been reported to the issue-tracking system. In fact, it is a common
scenarios to forbid developers to commit any piece of code that has no issue description
attached. Today, issue tracking systems have become so dependable that companies often
use it also to assign and track administrative tasks.
Although all the products reviewed in this chapter are successful and effectively adopted by
many distributed development teams, today companies are more and more relying on
collaborative development environments. Capgemini, a multinational consultant and
outsourcing company, has managed to successful introduce the use of CollabNet, the
enterprise version of SourceForge, by first starting with a few pilot projects, which focused on
core, most needed CDE features; then, CollabNet has been gradually spread to the various
seats. Since large companies’ intranets can be vast walled-gardens, hosting internal products
on a common CDE has ‘broken the silos’, giving projects much greater visibility and fostering
spontaneous collaboration across sites. Also Deutsche Bank has reported to have
successfully adopted the CollabNet CDE thanks to the ability to collect all the metrics
necessary to quickly target specific wastes in the project management and apply rapid
corrections. At InfoSupport, a Dutch-based consultant company, the adoption of the Jazz
CDE has significantly reduced maintenance costs and time to market. First, rather the
spending resources in trying to make several successful tools coexist, the adoption of Jazz
ensured an integrated set of tools, with a coordinated release lifecycle and no risks of
present and future incompatibilities between them. Second, the availability of a web-based,
thin client of Jazz allowed to give access to the relevant information within the CDE to
customers.

Take-Aways

We presented a number of tools and collaborative development environments, which are
available to support distributed teams. As a general guidance, we draw a few major lessons
that can prevent GSE/outsourcing efforts from falling to pieces.
Since the birth of Bugzilla, a bug is not actually a bug until it has been reported to the issue-
tracking system. Two aspects that drive the successful adoption of an issue tracking system
are ease of use and extensibility. On the one hand. a polished, intuitive user interface lowers
the entry level of expertise, thus allowing the tool to be opened to the customers as well. On
the other hand, choosing products that offer extension API allows companies to customize
tools to meet their corporate standards, for instance, in terms of security (e.g. single sign-on
integration) or culture (e.g. polling to prioritize new features).
Wiki have mostly found their way in distributed project as document repositories and online
help systems. Therefore, two aspects that drive the successful adoption of an enterprise Wiki
are the strong support for file uploading and WYSIWYG editing features. In fact, on the one
hand, with Wikis people found an easier way to share documents in a central place through
the web browser, rather than using email or storing them in a network folder. On the other

 2013, Christof Ebert to print Version 0.20 of 2010-08-28

Global Software and IT DRAFT – DO NOT DISCLOSE 13 / 44

hand, Wikis have dramatically reduced the webmaster bottleneck, and the related costs, by
reducing the expertise needed to update web pages, thus getting more people involved in
page editing.
Communication in GSE, should be supported via a variety of different tools. This is because
there is no perfect communication tool (e.g. face to face communication is easier and more
comfortable than writing emails, but is volatile nonetheless). Also it should be kept in mind
that many sites involved mean many different culture, habits, and, most of all, language
skills, in order to avoid any ‘one tool fits all’ approach.
The idea of adopting no SCM in a distributed project is out of question. We reviewed the
mainstream SCM tools, which can be broadly classified as centralized and distributed,
depending on whether they need a central repository or not. Unlike centralized SCM tools,
when developers check out a project from a distributed revision control system, their local
machines contain a complete clone of all project’s repository (called a fork), not a just a
portion of it. The major difference between a centralized and a distributed SCM tool is that
with the former committing a change also implicitly means publishing it onto the central
repository; conversely, with a distributed tool, commit and publish are decoupled because a
developer, after committing a change to the local repository, still has to explicitly decide when
to share it with others. In general, distributed SCM tools are preferred when developers need
to travel often. Therefore, companies should select an SCM that reflects the degree of
distribution of the project to manage. Highly distributed projects, involving three, four remote
sites or more, definitely benefit from using distributed SCM. In addition, distributed SCM tools
are more performing than centralized counterparts, especially for larger projects consisting of
tens of thousands of files or more.
Because they are essential to enable distributed development, SCM tools were the first to be
integrated within CDE products. CDEs successfully combine in one place most of the
technologies mentioned earlier (e.g. issue trackers, communication and knowledge
management tools) and thus provide a frictionless surface in development environments with
the goal to increase the developers’ comfort and productivity. CDEs provide developers with
awareness notifications, via feeds or emails, about the changes occurred to artifacts (e.g.,
documents being shared or modified), workspace (e.g. event notifications in case of build
failures, new commits), and team (e.g. coworkers’ profiles, blogs, activities, bookmarks,
wikis, and files). By aggregating this information in one place, CDEs provide an overall group
awareness to developers who have little or no chances to meet, useful to speed up the
establishment of organizational values, attitudes, and trust-based inter-personal connections,
thus facilitating communication as well as the overall distributed software development
process [Calefato09]. Although at first glance enterprise CDEs might just be discarded due to
high license costs, companies should neither overlook the hidden costs due to the effort of
integrating several pieces of free software, extending them to meet their corporate standards,
and contacting different tech-support teams.
Finally, the area where most of the CDE platforms needs improvement is in the integration of
build tools (only available in GForge, Trac, RTC, and Codeplex) and modeling tools (only
available in Trac).

 2013, Christof Ebert to print Version 0.20 of 2010-08-28

	1 Case Study: Collaborative Development Environments
	Motivation
	Background
	Results
	Take-Aways

	Appendix
	Glossary and Abbreviations
	Literature
	Further Information

	Index

