
 1

The Evolution of the eConference Project
F. Calefato, F. Lanubile, M. Scalas

Abstract
In this paper we describe both the
evolution of eConference, a text-based
conferencing system that has turned into a
collaborative platform, and how we used
our tool in an empirical study that assessed
the use of synchronous text-based
communication in distributed requirements
workshops, as compared to face-to-face
interaction.

1. Introduction

eConference is a text-based distributed
meeting system. The primary functionality
provided by the tool is a closed group chat,
augmented with agenda, meeting minutes
editing and typing awareness capabilities.
Around this basic functionality, other features
have been built to help organizers control the
discussion during distribute meetings. Indeed,
eConference is structured to accommodate the
needs of a meeting without becoming an
unconstrained on-line chat discussion. The
inceptive idea behind the eConference is to
reduce the need for face-to-face meetings, using
a simple collaboration tool that minimizes
potential technical problems and decreases the
time it would take to learn it.

The tool screen has six main areas: agenda,
input panel, message board, hand raising panel,
edit panel, and presence panel (Fig.1). The
agenda indicates the status of the meeting, as
well as the current item under discussion. The
input panel enables participants to type and
send statements during the discussion. The
message board is the area where the meeting
discussion takes place. The hand raising panel
is used to enable turn-based discussions. The
edit panel is used to synthesize a summary of
the discussion. Finally, the presence panel
shows participants currently logged in and the

role they play.

Among the participants invited, the meeting
organizer has to select who will act as
moderator and scribe. The moderator is
supposed to facilitate the meeting and has
control over participants, whereas the scribe
captures and summarizes the discussion in the
edit panel. Thus, the content of the panel
becomes the first draft of the meeting minutes.
Some participants may also be invited as
observers, in that they will attend the meeting,
but they will not be able to actively contribute
to the discussion.

During meetings, the interaction of active
participants is driven by the use of the hand
raise feature. This feature mimics the hand-raise
social protocol that people use during real
meetings to coordinate discussion and turn-
taking. It is a duty of the moderator to manage
the queue of the questions asked by participants
during presentations and panels. Compared to
the real-life social protocol, the hand raise
feature of eConference also gives to the
moderator the ability to preview questions. Our
prototype has evolved through the years, first
changing the underlying communication
framework, from the JXTA P2P platform to the
XMPP client/server protocol, which has proved
to be a more robust and reliable solution to
develop an extensible tool for distributed
meetings. Then, in the latest version,
eConference has evolved from a conferencing
system to a pure-plugin collaborative
framework, built on top of the Eclipse Rich
Client Platform.

In the following, from Section 2 to Section
5, we first discuss in detail each of the four
generations and the motivations for the
changes.

Fig.1 - eConference screenshot

In Section 6 we briefly report on an empirical
study conducted with eConference. Finally, in
Section 7 we draw the conclusions.

2. P2PConference (ver. 1.0)

The first version of our tool, named
P2PConference, was developed using the Java
binding of JXTA [1]. Project JXTA is an open-
source effort led by Sun Microsystems, which
provides a general purpose, language
independent middleware for building P2P
applications. It defines an XML-based suite of
protocols that build a virtual overlay network
on top of the existing physical network, with its
own addressing and routing mechanisms. The
building blocks of the JXTA network are
rendezvous and relay peers, also referred to as
super peers, which deal respectively with the
resources discovery and message routing.

The choice of adopting a fully-
decentralized, P2P approach stemmed from our
intent of building a distributed meeting system
easy to use and set up, with administration cost
kept at minimum. JXTA seemed a promising
technology because, by exploiting its virtual
network, we aimed at using existing resources
that live on the edge of the Internet
infrastructure (e.g., bandwidth, storage). No
central server to maintain and no single point of
failure is what the platform promised. JXTA

did not deliver on all of its promises though.1

3.1. Low level API & End User Complexity

The development of P2PConference started
in March 2002 using the Java binding of JXTA.
The first useable version of P2PConference was
released at the end of 2002.

The project was active during the year 2003,
when file sharing and co-browsing features
were added, but it was completely discontinued
in 2004. Eight different releases of the platform
were used for the development of
P2PConference (Tab.I). One of the main
disadvantages of JXTA was its overly low-level
API, which made developers subject to frequent
changes. A low level API was probably
considered as a means to build a general
purpose middleware and grant flexibility to
developers, but it ended up adding considerable
amount of extra code and complexity. Our
initial feeling about the low level and
complexity of the API was later confirmed by
the creation of the JXTA Abstraction Layer, a
community project launched at the end of 2002
with the goal of providing an immutable, high-
level API for all the most commonly used
JXTA primitives.

1 All the experiences reported and judgments expressed
here refer to versions of the platform previous to JXTA 2.3.

 2

The Evolution of the eConference Project

3

Tab.I - Impact of JXTA platform changes
Version Release

date
Impact (compared
to previous release)

1.0 build 49b 2002/02/08 Low

1.0 build 65e 2002/07/08 None

1.0 final 2002/09/24 None

2.0 2003/03/01 High

2.1 2003/06/09 Low

2.1.1 2003/09/16 None

2.2 2003/12/15 Medium

2.2.1 2004/03/15 Medium
None= No changes to API, bug fixes, other
improvements
Low = New APIs
Medium = New APIs, APIs changes (deprecations,

methods/classes removed, signature changes)
High = New APIs, APIs and Protocol changes (no

backward compatibility)

Until the release of the first useable version
of P2PConference, there were two major update
releases of JXTA (version 1.0 build 65e, and
version 1.0 final in Tab.I), with only API
additions or bug fixes that did not break our
code. Since then, however, the release of JXTA
2.0 caused a high impact on our code because
of large protocol changes. Afterwards, three of
the following four releases had significant
changes and a considerable impact on
developers. Impact assessed in the release-
announce emails sent on the JXTA mailing list
were occasionally optimistic. Sometimes, as in
the case of release 2.1, although the impact on
developers was assessed as low, there were
some platform incompatibilities that actually
obliged us to update the tool. Indeed, as soon as
the super peers that build the overlay network
were updated to the latest release, we used to
experience erratic behaviors (e.g., failure of
resource discoveries, high rate of lost
messages). Thus, not upgrading to the latest
release meant a lack of interoperability, i.e., we
could not properly use fundamental services
like routing or discovery, and run our system
over the Internet, in a truly distributed mode,
but only in our subnet, using IP multicast.
JXTA was not only complex for developers, but
even for end users. The first time a JXTA peer
was started and each time network
configuration changed, a user had to manually
set up the platform through the JXTA
configurator, which was overwhelmingly

complex because a plethora of settings were
provided, not only about the network
configuration (e.g., behind a firewall or not),
but also about the JXTA network itself (e.g., the
peer is an edge, rendezvous or relay).
Furthermore, it did not try to make any
automatic setup (e.g., use of HTTP tunneling
rather than TCP, behind a firewall/NAT).
However, since JXTA 2.0, the community felt
the need to bypass the manual configuration
and make it fully automatic. Until JXTA 2.2.1,
automatic configuration was not sophisticated,
as it simply tried to skip manual configuration
using template configuration files (e.g. HTTP
firewalled edge peer, TCP rendezvous peer) and
it did not always work well without manual
tuning.

3.2. Lack of reliable messaging mechanisms

The main issue that forced us to abandon
the P2P platform was the inadequateness of the
JXTA messaging service. In JXTA the
fundamental abstraction used for inter-peer
communication is the pipe, a virtual channel
that consists of an input and an output end.
JXTA offered different alternatives to
implement group communication in our
prototype (Tab.II). Since the release of JXTA
1.0, the JXTA core protocol specification
defines three kinds of core pipes: unicast,
secure, and propagate pipes. Unicast and secure
pipes serve for one-to-one communication,
connecting two peers in unicast mode.
Propagate pipes, instead, operate in one-to-
many mode, leveraging either IP multicast on
the subnet, or rendezvous peers. All types of
core pipes are not reliable by definition and
thus, they cannot guarantee ordered message
delivery. We also considered non-core pipe
services, namely bidirectional pipes and JXTA
Sockets, whose purpose is to provide
bidirectional communication. Bidirectional
pipes were available since JXTA 1.0, but
became reliable only since the release of JXTA
2.3, when we had already discontinued the
prototype development and maintenance. JXTA
sockets, available only since JXTA 2.0, are
fundamentally a reimplementation of the
standard Java socket API upon the underlying
JXTA pipe infrastructure and, thus, reliable by
design. We chose to use the propagate pipe
service in our prototype because its one-to-
many communication mode was the most apt
for implementing group communication in our

 4

Tab.II - Alternative JXTA pipe services evaluated

Pipe service Since Type
Needs a server

for group
communication

Reliability
ensured

Unicast v 1.0 1-to-1 Yes No

Secure v 1.0 1-to-1 Yes No

Propagate v 1.0 1-to-M No No

Bidirectional v 1.0 1-to-1 Yes Yes
(v 2.3+)

JXTA Socket v 2.0 1-to-1 Yes Yes

decentralized system. Despite the fact that
reliability was not ensured, propagate pipe was
actually the only practical solution, as all the
other communication services were meant for
point-to-point communication. Indeed, the use
of any one-to-one service would have entailed
the need to set up in the peer group a super peer
that behaved very similar to a server (i.e.,
receive a message from a peer, then route it to
all other known peers). This solution would
have defeated any motivation for experimenting
a P2P approach, as it would have been
equivalent to using a traditional client/server
solution, but on a P2P platform, and with much
more complexity. Unfortunately, in our
experience propagate pipes and discovery on
rendezvous peers proved to be too much
unreliable, unless all the peers were in the same
subnet using multicast. Instead, when peers
were dispersed over the Internet, results were
discouraging, with high message drop rate and
low resource discovery recall.

Although we have not collected data from
formal tests or benchmarks, other research
studies have somewhat confirmed the problems
of the JXTA messaging architecture in general.
Benchmarking JXTA is a hard challenge and
test results show a high variance because of the
several platform releases, and the very many
different network settings and peer
configurations to take into account (e.g., using
multicast or rendezvous discovery, relay peers
or direct connection, TCP, UDP or HTTP). In
their analysis of pipe services performance in
versions 1.0 build 49b and 1.0 build 65e,
Seigneur et al. found that unicast pipes behaved
reliably only using TCP in local/LAN test
scenario, whereas an extremely high message-
drop rate was found when using HTTP [2].
Halepovic & Deters tested performances of
core and non-core pipe services for three JXTA
releases (1.0, 2.0 and 2.2) in both LAN and

WAN [3][4]. Results reported in these
studies are positive in terms of scalability both
in LAN and WAN, also for propagate pipes,
though authors say they perform best on the
LAN when UDP multicast is available.
However, these tests are performed considering
only one sender and an increasing number of
receiver peers (1, 2, 4, and 8). Hence, these
tests on propagate pipe scalability did not take
into account the realistic case of multiple
senders and receivers in a large peer group over
the Internet, messaging through relays and
performing discovery on rendezvous. Finally,
Antoniou et al. concluded that throughput of
JXTA socket is similar to plain socket
throughput on LAN, whereas latency values are
higher, due to the verbosity of XML messages
[5].

3.3. Lack of a presence awareness

mechanisms

Another issue with JXTA was that the
platform did not come with any built-in
presence awareness mechanism. In
collaborative applications, presence awareness
plays a key role for coping with the lack of
physical proximity and improving distributed
work. Thus, we decided to develop from scratch
a simple presence-broadcasting feature that
propagated a custom presence notification to all
known peers. Despite the importance of a
presence awareness mechanism for a
collaborative tool, we decided not to develop a
more sophisticated custom service because the
community had already started a project to
develop a framework for presence management.
Unfortunately, the project did not make any
progress until we discontinued the development
of P2PConfenrence, and, to date, it has released
no files yet. Though not a major issue, we felt
the lack of a reliable and sophisticated presence
awareness mechanism, as we believe it is a very
basic service for a general purpose middleware.

The Evolution of the eConference Project

5

3. eConference (ver. 2.0)

JXTA was released in 2001. After having
developed with it for over a year and a half, our
feeling was that it had been released in a yet
too-early stage, not mature enough, probably
just on the heels of the growing popularity and
hype of P2P. Although it aimed at addressing a
real problem (i.e., the fragmentation and
redundancy of services offered by the plethora
of existing P2P systems), JXTA failed at
delivering a robust, general-purpose platform
that can serve as the building blocks for P2P
communication-intensive applications.
Paradoxically, its messaging framework proved
inappropriate for implementing group
communication without using a client/server-
like approach. In addition, we did not expect
the JXTA API to change often and to have
backward compatibility issues as well.

Considered the several issues we
encountered during the development of
P2PConference, we decided to port the tool
onto a different communication platform. Our
choice fell onto Jabber/XMPP. The Jabber
project started in 1999 to create an open
alternative to closed instant messaging (IM) and
presence services [6]. In 2002 the Jabber
Software Foundation contributed the Jabber
core XML streaming protocols to the IETF as
XMPP, eXtensible Messaging and Presence
Protocol. XMPP was finally approved in early
2004 (RFC 3920–3923) and now it is being
used to build not only a large and open IM
network, but also and mostly to develop a wide
range of XML-based applications, from
network-management systems to online gaming
networks, content syndication, and remote
instrument monitoring.

Compared to JXTA, XMPP offered us three
clear advantages. First, XMPP provides by
design a robust, extensible, secure and scalable
architecture for near real-time presence,
messaging and structured data exchange. The
second advantage is simplicity. XMPP has been
conceived to delegate complexities to the
servers as much as possible, so that developers
can keep focused on the application logic, and
the clients can stay lightweight and simple.
Furthermore, the intrinsic extensibility of
XMPP allows leveraging the existing services
(e.g., multi-user chat) and also adding extra
features (e.g. agenda, hand raise). Third, the
IETF standardization of the core XMPP

protocols has generated a plethora of high level
XMPP APIs, available for a number of
programming languages. XMPP programmers
do not even need to know the protocol details,
as all the raw XML exchanges are hidden by
the use of any of these APIs. At a first glance,
compared to our previous P2P solution,
choosing XMPP might look somewhat
contradictory. However its architecture is not
purely client/server, but a hybrid, very similar
to email. XMPP entities are identified by a
unique Jabber ID, which is all that is needed in
order to exchange messages. The XMPP
network is formed by hundreds public servers,
which are all interconnected to form the XMPP
federation. Although running an XMPP server
which is not part of the federation is still
possible for a corporate LAN, from our
perspective, using the XMPP federation was
preferable because it allowed us to develop a
client/server meeting system, without
abandoning the goal of keeping at minimum the
infrastructure costs (i.e., again no central server
to install and administer, and no infrastructure
costs, as in the case of P2P).

We refactored P2PConference to make the
tool independent of the underlying
communication protocol. The implementation
that used XMPP as network backend was called
eConference [7]. Unfortunately, co-browsing
and file sharing features could not be easily
migrated to work with XMPP, as they needed to
be rewritten from scratch. These were not
features related to communication though, and
so we chose to run a pilot study without them
anyway.

In our experience XMPP proved to be more
stable, easy-to-use, and reliable than JXTA. Our
preference for XMPP over JXTA is not based
on a preference for the client/server paradigm
over P2P. On the whole, XMPP is a good
choice for applications that need an extensible
messaging framework. Indeed, its intrinsic
extensibility has allowed us to easily expand the
multi-user chat capability, adding the extra
functionality we needed to build eConference.

4. eConference RCA (ver. 3.0)

When developing our prototype, we initially
focused on basic features for supporting smooth
discussion and facilitating meeting creation and
execution, so as to maximize the tool
effectiveness while minimizing complexity.

The Evolution of the eConference Project

6

The first time we used eConference was to
organize and run sixteen distributed
requirements workshops, with the main intent
of testing the tool itself. The participants were
master students in computer science, attending
a web engineering course at the University of
Bari. As final course assignment they were
required to work in groups of three to five
people and develop an enterprise application,
including both analysis and design
documentation. The minutes edited by the
scribe were the main outcome of the
workshops. They contained a general
description of the application to develop, a
high-level list of the features to implement, all
the decisions taken, and the constraints, both
technical and functional, imposed by customers.
Afterwards, the minutes were used by the
developers to edit a full requirements
specification document. We analyzed
information from multiple sources to collect
experience results, namely direct observations
of the meetings, conversational logs, and
questionnaires, which were then used to evolve
the tool. Direct observation helped us to spot
design flaws in the implementation of the hand
raising feature, also confirmed by the log
analysis, whereas the feedback from the
participants allowed us to obtain mainly feature
suggestions and enhancements. The most
common feature requests were about being able
to add/edit/remove agenda items, draw UML
diagrams in the edit panel, and send private
messages to a single stakeholder or the whole
group (i.e., developers or customers). We
believed that editing agenda when the meeting
is going on would be useful for granting a
greater flexibility. Drawing UML diagrams is
certainly useful for some technical meetings,
but useless for others. This feature was
considered a serious candidate for being
developed as a plugin. Instead, we were
skeptical about the usefulness of enabling
private messaging. Though students motivated
their request (“sometimes there were some
points we wanted to make, but not in public”),
we were worried that this feature, if
implemented, could be abused to the detriment
of the discussion itself, especially in the case of
private group communication. Thus, we
decided for a tradeoff, and accepted only to
implement one-to-one private messaging.

The only technical problem that some
students reported about in questionnaires was

related to the scrolling of the message board
panel when a new message was received.
Talking informally to students about this
annoyance allowed us to spot and deepen
another issue that had not been revealed by
questionnaires. Students perceived that the item
based discussion helped to stay focused on the
item currently at hand, but, sometimes, they
needed to switch back to another one previously
discussed. In such cases, students found
awkward to scroll up, looking for the lines
about that item. Moreover, the message board
automatically scrolled down again as soon as a
new message was received. To some extent,
this issue should have been mitigated by having
always at hand the minutes draft in the edit
panel. However, our course was not on
requirements engineering techniques and,
hence, it is likely that students designated as
scribes lacked training, and that the draft did
not reported all the information needed.
Nevertheless, the feedback on this issue
allowed us to understand that, to ease
communication flow in eConference, we
needed to have separate threads of discussion
for each item available in the agenda. Such a
feature would avoid having a cluttered message
board, with utterances about items interleaved
with each other. When we ported our tool from
JXTA to XMPP, we lost some features (namely
file sharing and web-browser sharing), because
they could not be easily adapted, but needed to
be rewritten from scratch. From this idea we
realized that we wished to avoid all the effort
spent in adapting the tool to support another
communication platform. Furthermore, from
the pilot study we collected many useful
requests of feature extensions, although specific
for the requirements engineering context.
Nevertheless, it is overly challenging to foresee
all the possible features needed to make a
meeting system flexible enough to be apt for all
contexts. These concerns led us to think about
evolving eConference from a simple
collaborative application to a collaborative
platform. Our intention was to have a platform
that offered as core functionality a reliable,
extensible, and scalable messaging framework,
on the top of which new features could be
added as plugins. We also wanted to support
multiple communication protocols through
pluggable network backends, so as to have the
possibility to add a new one at any time by
writing only the specialized code for its
integration.

The Evolution of the eConference Project

7

To support the composition of a larger
system that is not pre-structured, or to extend it
in ways that cannot be foreseen, an architecture
that fully supports extensibility is needed. We
decided to build another prototype exploiting
the Eclipse Rich Client Platform (RCP) [8].
Since the release of version 3.0, Eclipse has
evolved to become an open and fully extensible
framework for developing rich client
applications. While mostly known as a
powerful Java IDE, now Eclipse is actually a
universal plug-in platform for creating other
platforms. Eclipse RCP is a pure-plugin system
and, hence, fully extensible by architectural
design. This new modular architecture looked
very attractive to us because it promised to help
us in developing with a focus on modular
functionality and writing new plug-ins for
missing functions. In traditional plugin
architectures plugins are mere add-ons that
extend the functionality of a host application,
i.e., binary components not compiled into the
application, but linked via well-defined
interfaces and callbacks. Instead, in pure-plugin
systems plugins become the building blocks of
the architecture, as almost everything is a
plugin and, consequently, the host application
becomes a runtime engine with no inherent end-
user functionalities, each of which are provided
by a federation of plugins and orchestrated by
the engine [9].

The latest version of eConference is a rich
client application, built upon Eclipse RCP.
Besides all the benefits that come from using
native widgets, our tool has inherited all the
capabilities of the RCP, in terms of extensibility
and classical concepts from the Eclipse world,
like views and perspectives. It has been
developed incrementally, using a story-driven
agile process. In the following we describe
some of the epics, i.e., the high-level, long
stories that have then been split into smaller,
testable user stories.

1) Epic 1: A user can see presence status of
contacts and send instant messages. We started
building a feature (i.e., a collection of plugins in
Eclipse terminology) to provide instant
messaging and presence awareness capabilities,
which are both at the core of XMPP and, thus,
the mapping was almost effortless.

2) Epic 2: A user can create and join a chat
room. We extended the existing feature to
implement multi-user chat for reliable group

communication. Unlike presence and instant
messaging, multi-user chat is not a core
functionality of XMPP. Instead, it is available
as a XMPP Extension Proposal (XEP). The
Jabber Software Foundation develops
extensions to XMPP through a standards
process centered on XEPs. The Multi-User Chat
XEP is the protocol extension proposed for
managing chat rooms [10]. Though not in the
final stage yet, this draft is already supported by
all the hundreds public servers belonging to the
XMPP federation. One limit we found with the
multi-user chat extension was that it did not
handle typing awareness. We tackled this
problem leveraging the intrinsic extensibility of
XMPP and creating a custom typing
notification, sent whenever a participant in the
room starts to type.

3) Epic 3: A user can create and join an
eConference. Finally, leveraging the
functionality already provided by the multi-user
chat feature, we developed new plugins for
each view needed, namely the agenda, edit
panel and hand raising, so as to obtain the
overall “eConference feature” (see Fig.2).
Indeed, rather than an application, eConference
is now just a feature of our rich client
application, with its own perspective. Similarly,
when developing new features for web-browser
and presentation sharing, we will build onto the
existing features and plugins, and create new
perspectives to optimize the arrangements of
the UI views.

To implement the eConference feature, we
took into account the feedback and suggestions
gathered from the pilot study. Thus, we made
the agenda editable by the moderator, when the
meeting is already started, and added support
for one-to-one private messaging. Finally, we
also implemented the item-based discussion
threads, so that all the utterances related to an
item are grouped together. As soon as the
moderator selects the first item in the agenda,
say ‘Epic1’, the meeting topic is changed
accordingly (see the tab name in Fig.3a). When
it is time to move to the next item (say ‘Epic
2’), the moderator selects it in the agenda and
all the utterances about the previous item (‘Epic
1’) are hidden away from the message board, so
as to show only the newly-entered utterances
about the item at hand (Fig.3b). Suppose, for
instance, that a note has to be added to ‘Epic 1’.
As soon as the moderator selects it back in the
agenda, all the utterances previously exchanged

The Evolution of the eConference Project

8

Fig.2 - eConference perspective

will appear in the message board again. The
dashes indicate the new session in the
conversation (Fig.3c).

Our experience with Eclipse RCP was
positive: With a little extra coding, this
framework offers to an application all the
benefits seen in Eclipse (e.g., pure-plugin
architecture, perspectives, update manager, help
system). The only, but negligible, problem we
encountered was the final size of the product
itself, since the final application gets bloated
because of all the Eclipse RCP libraries to be
included, even if not all of its services are
utilized. This limitation is already known and
the Eclipse community is now working to
reduce the minimal set of libraries needed [11].

4. eConference over ECF (ver. 4.0)

Although designed to be independent from
the network protocol and implemented using a
pure plug-in architecture, the present version of
eConference suffers from some architectural
drawbacks. Among these limitations, the major
ones include 1) a low-level, abstract network
layer, expansive to maintain on our own; 2) a
burdensome publish/subscribe subsystem, not
taking advantage of the Eclipse internals for the
dispatching of events in a dynamic plug-in
environment; 3) the use of components

statically-wired together, which limits the
testability of single components and the chance
to effectively work with a test-driven approach.

Although we were working only with
XMPP, for the third generation of the
eConference tool, an abstract network
infrastructure layer was designed and
implemented to allow the use of other
communication protocols in the future, without
a severe impact on the code base.
Consequently, all the domain-specific features
were built on that API. As a side effect, the
low-level network layer had to be maintained in

a)

b
)

c)

Fig.3 - The item-based discussion threads

The Evolution of the eConference Project

9

addition to the application itself, while we
wanted to concentrate efforts on the
eConference domain components, instead.

The Eclipse Communication Framework
(ECF) [12][13] provides RCP-based
applications with an abstract communication
layer that not only replaces the whole network
infrastructure layer of eConference, but also
provides some of the collaborative features
available in our tool, either in terms of API or
visual components. Thus, ECF can be
employed to replace the communication layer
and some domain-specific parts of our tool,
relieving us from the burden of maintaining an
abstract network layer to cope with future
evolutions.

ECF is a set of reusable components, which
introduce, within the Eclipse platform, typical
collaborative services and features (e.g., instant
messaging, white-boarding), bundled as
standard plug-ins that can be reused in whatever
context (e.g., the JDT, as well as any rich-client
application, built on top of Eclipse RCP). Such
components include core API definitions,
graphical user interface widgets, and interfaces
for specific network protocols. The ECF core
includes an extensible framework, the
SharedObject API which is of critical
importance for distributed applications built
using the MVC pattern (like a distributed
meeting system), since they need to share and
synchronize the model(s) across network. Thus,
the SharedObject API provides a way for
sharing data at application-level, without
having to bother with protocol-specific details.
The other notable components, available in
ECF, include the Presence API, which handles
the presence events, the File Transfer API, for
sharing content between remote users, and the
Remote Services API, which provides a RPC-
like mechanism for remote procedure calls.

All these APIs provide a high-level
abstraction layer that enables ECF-based
applications to support multiple protocols
wholesale, ignoring any implementation detail,
which is transparently handled by the
underlying framework. ECF, in fact, already
provides the implementations (called
“providers”) of abstract interfaces for the most
used communication protocols (such as, XMPP,
Skype, MSN, and Yahoo). Besides, support to
new network protocols can be added to ECF at
any time, by defining and implementing

additional providers.

ECF, however, does not come only with a
set of non-GUI interfaces. Instead, it includes
several out-of-the box widgets, such as,
contacts roster, chat editors, and user account
management, which can be embedded in any
Eclipse-based application.

The porting of eConference to ECF was not
a straightforward task, as one might expect.
Indeed, between eConference 3 and ECF there
was a large overlapping of both the whole
network infrastructure layer and the features
provided, either in terms of API and visual
components. The main design similarity
between the communication infrastructures in
eConference 3 and the ECF regarded the
separation of functionalities from their
implementation, realized by a complex core set
of interfaces. Thus, both architectures provided
the basic interfaces for protocol abstraction and,
then, the adoption of ECF, suggested a whole
rewrite of the application, with only a limited
portion of the existing GUI code reused. With
the development of eConference 3 we realized
that we were not able to sustain the cost of
maintaining an abstract communication
network infrastructure on our own. Hence, the
cost of rewriting the application almost from
scratch was justified by our intension of
employing a standard network technology,
maintained separately from our tool, by a larger
community than that of eConference will ever
be, given its more restricted audience. In
addition, consistently with the Eclipse RCP
goal, also the ECF architecture is designed for
extensibility. This means that adding new
features in a second time (i.e. shared web
browsing) won't break our existing code.

With respect to the functionalities, Tab.III
summarizes the major features available in
eConference 3 and their support available out-
of-the-box in ECF. The table shows that ECF
can replace most of the features available in
eConference 3. Nevertheless, the most specific
plugins (i.e., hand raising, message board, event
manager) had to be redeveloped using the API
of ECF, because they were too dependent on
the previous design to be just ported. Hence, the
fourth generation of eConference is being
developed as a rich-client application that uses
plug-ins either available out-of-the-box in ECF,
or developed ad hoc upon its abstraction
framework (Fig.4).

The Evolution of the eConference Project

10

Tab.III - Components required by eConference 3
and their support in ECF (only the major

components are listed)

Available in eConference 3 Provided
by ECF

Contacts management Yes

Chat* Partially

Roster View Yes

Extension Points API Yes

Hand Raising No

White board Yes
Conferencing Events Manager

(invitations, reminders, …) No

Account creation / Login Manager Yes

* Does not support multiple discussion threads

5. The empirical investigation

The goal of the empirical investigation
described in the remainder of this paper was to
evaluate (1) the use of synchronous, text-based
communication in distributed requirements
workshops, as compared to F2F, and (2) the
effects of CMC with respects to the different
tasks of distributed requirements elicitation and
negotiation.

Requirements engineering is an appropriate
domain for this study for a couple of reasons.
First, it involves a complex set of
communication-intensive tasks. Requirements
elicitations and negotiations are among the
most challenging and communication-intensive

practice in software engineering [14]. Further,
requirements elicitation and negotiation are
complex tasks that require a constant interplay
between idea generation, decision making, and
conflict resolution activities, although in
different measure (elicitation is more a
generative task, whereas negotiation is more
oriented to decision making). Secondly, recent
research in the field has compared to F2F both
audio and video links [15][16], but it has not
yet given same attention to synchronous, text-
based communication.

5.1. Experimental setting & design

We conducted an empirical study of six
academic groups, playing the role of
stakeholders involved in requirements
engineering activities. The six groups observed
(Gr1-6) were attending a Requirements
Engineering course held at the University of
Victoria in 2006. The study subjects were forty
undergraduate students who volunteered to take
part in the experimentation, after giving
informed consent. Each group was composed of
five to eight randomly-selected students (the
terms students, stakeholders, and study
participants are used interchangeably
henceforth).

The goal of each project team was to
develop a Requirements Specification (RS)
document as a negotiated software contract
between the developer team and the client team.

Conferencing

SWT

JFace

OSGi Service Platform

Eclipse Core Runtime

UI (Generic Workbench)
Abstract Communication Layer

XMPP JXTA … JMS SIP

ECF

Eclipse RCP

Edit panel
Control
features

Browser
Sharing

Presentation
Sharing

eConference over ECF

Agenda

Account/Contact Mngmt…

…

IM / chat

Fig.4 - The fourth generation of eConference is a rich client application composed by ad hoc

and ECF-native plug-ins

The Evolution of the eConference Project

11

CLIENTS TASKS

JOINT TASKS

DEVELOPERS TASKS

1.
Kickoff
Meeting

2. Create
RFP

3. Analyze
RFP

4. Rqmt
Elicitation

5. Create
RS 1.0

6. Discovery
Issues on RS 1.0

7. Rqmt
Negotiation

8. Create
Prototype Demo

9. Prototype
Demo

10. Create
RS 2.0

Fig.5 - Workflow for the development process of the RS documents

The project work did not contemplate the

writing of any code for the developer groups.
Fig.5 illustrates the workflow of the
requirements development process, over a
period of about ten weeks. It comprises ten
phases of continuous requirements discovery
and validation, through which the
understanding and documentation of
requirements was improved. Each of these
phases consists of tasks for either one of the
client/developer groups, or both groups (project
tasks). The developers, together with the
clients, created several versions of the
Requirements Specification document, while
applying techniques of requirements elicitation
and negotiation. The deliverables on which
students were graded in the course are the RS
1.0 and 2.0, reflecting the shared understanding
of the project that the clients and the developers
built over the requirements elicitation and
negotiation workshops.

The experiment required to compare CMC
and F2F communication mode in requirements
elicitation and negotiations workshops and,
thus, the experimental plan corresponds to a 23
factorial design [17]. The three factors, each
having two levels, are:

1. communication mode (levels: F2F and
CMC);

2. requirements workshop (levels:
elicitation and negotiation);

3. role (levels: client and developer).

The requirements workshop sessions were
instructed so that all the workshops could be
held in parallel and be completed within an
hour. F2F workshops (both elicitations and

negotiations) were held in parallel, in the same
classroom. Also the CMC workshops were all
held in parallel, but the students interacted from
three different laboratories, so as to simulate
geographical dispersion. CMC workshops were
run using the eConference tool. To let
participants gain familiarity with the tool, a one
hour demo was given at class time. In addition,
a user manual was made publicly available on
the course web site. Furthermore, to reduce the
risks of technical problems, a training session
was instructed one week before each CMC
workshop session, during which the students
installed the tool and got acquainted with it.

5.2. Data Analysis

The data sources for the experiment are the
post-elicitation and post-negotiation
questionnaires, which were administered to the
students about one week after each
requirements workshop session.

For the sake of space, we briefly report here
the results from the analysis applied to data
collected from the subjects who got exposure to
all the four workshop/medium combinations.
Further details can be found in [18]. The box
plot in Fig.6 shows F2F negotiation to exhibit
the highest, or best, mean rank (3.5) followed
by F2F elicitation (2.75). CMC elicitation and
CMC negotiation have the lowest average ranks
(2.15 and 1.6, respectively).

Given the results of nonparametric test for
differences, we can conclude that study subjects
perceived F2F negotiations as the best-fitting
task/technology match in terms of the extent to

The Evolution of the eConference Project

12

 Mean
 ±SE
 ±SD

F2F Elicit
CMC Elicit

F2F Negot
CMC Negot

Requirements workshop

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

R
an

k

Fig.6 - Ranks based on subjects’ evaluation of satisfaction with performance (the higher the

rank, the better the workshop/medium fit)

which discussion was consensus-based and the
information generated not missed. GSS
research has shown that groups interacting on
text-based channels have often outperformed
collocated groups in task of idea generation
because of the possibility to input ideas in
parallel. Conversely, collocated groups have
usually outperformed distributed groups in
executing tasks that involve problem solving,
decision making, and conflict resolution [19].
Neither the use of rich media, like video or F2F
communication, has been shown to positively
affect the performance quality of the work
when it involves negotiation [20][21]. Thus,
consistently with these findings, we expect that
synchronous, text-based elicitation represents a
better task/technology fit than synchronous,
text-based negotiation. The box plot in Fig.5
shows a large and statistically significant
difference between subjects’ satisfaction with
performance during F2F and CMC
negotiations, perceived as the best and worst fit,
respectively. In contrast, the difference between
F2F and CMC elicitation is not statistically
significant. These results, on the one hand,
confirm that in terms of satisfaction with
performance CMC elicitation is a better
task/technology fit than CMC negotiation, and,
on the other hand, suggest that the general

preference for F2F requirements workshops is
due to the strong preference for the F2F
negotiation fit over the CMC counterpart.

6. Conclusions

In this paper we have described the
development of eConference throughout four
major versions, from the initial prototype based
on JXTA until the work-in-progress prototype
based on the Eclipse Communication
Framework for rich-client applications that
provides transparent support to the most used
communication protocols. This upcoming
project has received the IBM Eclipse
Innovation Award in the 2006 competition.

We have used our tool at the University of
Victoria, Canada, to run a controlled
experiment to assess the differences between
F2F and text-based, as perceived by
stakeholders during both elicitation and
negotiation workshops. The findings from the
first analyses of the experimental data have
confirmed CMC elicitation is a better
task/technology fit than CMC negotiation.

 13

References
[1] Project JXTA, https://jxta.dev.java.net/
[2] J-M. Seigneur, “Jxta Pipes Performance,”
2002.
[3] E. Halepovic, and R. Deters, “The Cost of
Using JXTA”, 3rd Int’l Conf. on Peer-to-Peer
Computing (P2P ’03). Linköping, Sweden:
IEEE Computer Society, Sept. 2003, pp. 160-
167.
[4] E. Halepovic, and R. Deters, “JXTA
Messaging: Analysis of Feature-Performance
Tradeoffs”, 2005,
http://bosna.usask.ca/pub/JXTAMessagingPerf-
toReview.pdf
[5] G. Antoniu, P. Hatcher, M. Jan, and D.A.
Noblet, “Performance Evaluation of JXTA
Communication Layers,” 5th Int’l Workshop
on Global and Peer-to-Peer Computing (GP2PC
’05), Cardiff, UK, May 2005.
[6] P. St. Andre, “Streaming XML with
Jabber/XMPP,” Internet Computing, IEEE,
vol. 9, n. 5, Sept.-Oct. 2005, pp. 82-89.
[7] The eConference Project,
http://cdg.di.uniba.it/projects/econference
[8] J. McAffer, and J-M. Lemieux, Eclipse
Rich Client Platform: Designing, Coding, and
Packaging Java™ Applications. Addison
Wesley Professional, 2005.
[9] D. Birsan, “On Plug-ins and Extensible
Architectures,” Queue, ACM, vol. 3, n. 2,
March 2005, pp. 40-46.
[10] XMPP Multi-User Chat (MUC) XEP,
http://www.jabber.org/xeps/xep-0045.html
[11] Eclipse RCP size bug,
https://bugs.eclipse.org/bugs/show_bug.cgi?id=
53338
[12] Aniszczyk, C. and Safabakhsh, B. “Getting
Started With The Eclipse Communication
Framework,” http://www-
128.ibm.com/developerworks/opensource/librar
y/os-ecl-commfwk/, last visit: July 24th 2007

[13] Eclipse Communication Framework
homepage, http://www.eclipse.org/ecf/
[14] Macaulay, L.A. Requirements Engineering.
Springer-Verlag Telos, 1996.
[15] Lloyd., W.J., Rosson, M.B., and Arthur,
J.D. “Effectiveness of Elicitation Techniques in
Distributed Requirements Engineering.” Proc.
IEEE Int’l Conf. on Requirements Engineering
(RE ’02), Essen, Germany, 9-13 September
2002, pp. 311- 318.
[16] Damian, D., and Zowghi, D.
“Requirements Engineering Challenges in
Multi-Site Software Development
Organizations.” Requirements Engineering
Journal, Vol. 8, 2003, pp. 149-160.
[17] Montgomery, D.C. Design and Analysis of
Experiments. J. Wiley & Sons, New York,
1996.
[18] Calefato, F., Damian, D., and Lanubile, F.
"An Empirical Investigation on Text-Based
Communication in Distributed Requirements
Engineering", Proc. of the 2nd International
Conference on Global Software Engineering
(ICGSE 2007), IEEE Computer Society, pp.3-
11.
[19] Murthy, U.S., and Kerr, D.S.
“Task/Technology Fit and The Effectiveness of
Group Support Systems: Evidence in The
Context of Tasks Requiring Domain Specific
Knowledge.” Proc. 33rd Hawaii Int’l Conf. on
System Sciences (HICSS-33), 2000, Vol. 2, pp.
1-10.
[20] Finn, K.E., Sellen, A.J., and Wilbur, S.B.
Video-Mediated Communication. Lawrence
Erlbaum Assoc. Inc., Hillsdale, NJ, 1997.
[21] Olson, J.S., Olson, G.M., and Meader, D.
“Face-To-Face Group Work Compared to
Remote Group Work with and without Video.”
In Finn, K., Sellen, A., and Wilbur, S. (eds.),
Video Mediated Communication, Hillsdale, NJ:
Lawrence Erlbaum Associates, 1997.

