
Product Line Engineering for NGO Projects

Fabio Calefato*, Roberto De Nicolò†, Filippo Lanubile*, Fabrizio Lippolis†

*University of Bari, Italy

Email: {fabio.calefato, filippo.lanubile}@uniba.it

†Informatici Senza Frontiere, Italy

Email: {roberto.denicolo, fabrizio.lippolis}@informaticisenzafrontiere.org

Abstract—Non-governmental organizations (NGOs) are often

plagued by very limited human and financial resources. In this

paper, we show how product line engineering (PLE) offers an

opportunity to increase the sustainability of software projects

that rely on the help of NGO volunteers. Building on the case of

an Italian NGO that supports assistive technologies, we propose a

PLE model that only depends on the branching capability of a

free version control system.

Index Terms—Assistive technologies, NGO, sustainable

software development, product line engineering, branching.

I. INTRODUCTION

IT without borders (shortly ISF, from the Italian name

“Informatici Senza Frontiere”) is an Italian non-governmental

organization (NGO) that considers information technology (IT)

as an asset of primary necessity and then an essential

prerequisite for the economic and social development. Founded

in 2005 by a small group of Italian IT professionals, ISF today

counts 13 regional sections and over 300 members. ISF

organizes its volunteers to work on computing projects,

focusing its action on contexts of marginalization, difficulties

and emergencies, both in Italy and in developing countries. ISF

projects tend to involve other NGOs and include different

stakeholders, ranging from schools and hospitals to

marginalized communities, disabled people and senior citizens.

Since it is primarily run by volunteers offering their spare

time, ISF has very limited human and financial resources. The

University of Bari is helping ISF to sustain the evolution of

three major software projects for assistive technology, by

recruiting, as developers, student volunteers working at their

final-year theses. Yet, the issues coming from high turnover

rate and the limited amount of time that volunteers have to

work on projects still remain.

In order to counteract such problems and then further

increase project sustainability, we propose a product line

engineering (PLE) that only depends on the branching

capability of a free version control system.

II. NGO PROJECTS

In this section, we illustrate three of the most successful

prototypes of assistive technology developed through the

NGO-academic partnership.

A. Paperboy

Paperboy (aka Strillone, in Italian) allows visually impaired

people to listen to Internet newsfeeds on demand by leveraging

vocal synthesis. Paperboy was developed upon request from

the Italian Blind Union (IBU) association who reach out to ISF

asking for help to improve the accessibility of the local

newspaper for their own members.

Paperboy was initially developed as a web application for

PCs, compatible with most of the screen readers for the

visually impaired available on the market. Then, as blind

people are avid smartphone users, we decided to provide them

with mobile solutions too, developing apps for Android, iOS

and Windows Phone.

Since its release on all the three app stores, Paperboy has

been received very well. In fact, as of this writing, it has been

already downloaded over 4,000 times overall. Finally,

Paperboy has been recently nominated finalist in the “Access to

information and knowledge” track of the 2014 WSIS Prize1, a

contest organized by the International Telecommunication

Union (ITU, the United Nations specialized agency for

information and communication technologies) which awards

the best IT projects in the world [1].

B. I Speak Again

I Speak Again (ISA) is a communicator designed for people

who are anarthric and quadriplegic, and then unable to speak

and move their limbs. The goal of ISA is to bring an affordable

technological solution to people who cannot communicate

because of illness.

Back in 2011, ISF received a request from an amyotrophic

lateral sclerosis (ALS) association to help patients to

communicate with friends and relatives. People affected by

ALS use very expensive eye-tracking devices that allow them

to compose words on a screen and play them back through

vocal synthesis. Communicators like these are so expensive

(about 20.000€) that the Italian public health service is unable

to provide them to all patients in need.

ISA can be described as a virtual, on-screen keyboard

controlled through the eye movement, using any device

equipped with an eye-tracking module and capable of running a

web browser. Other than text to speech synthesis, a notable

1 http://groups.itu.int/stocktaking/WSISProjectPrizes2014.aspx

feature is the use of a text predicting and correcting algorithm

to expedite sentence composition in both English and Italian.

Besides, ISA allows selecting built-in images and common

sentences that express primal needs like “I feel cold”, “I want

to eat” or “I’m tired”. Except for a commercial eye-tracking

module, to keep overall costs as low as possible, we built ISA

using exclusively open source components.

C. I Move Again

Other than being unable to speak, ALS patients cannot

move either. Therefore, after completing a prototype that can

help them to “speak again”, the natural next step was helping

them to “move again”. This is how the I Move Again (IMA)

project started as a spinoff of ISA. In fact, we envisioned that

the gaze input could be used to control the movement of a

power wheelchair.

On the software side, we decided to leverage the

infrastructure already available in ISA, especially as far as

presentation and eye tracking is concerned. According to our

design approach, the screen has been split into five main areas,

corresponding to the four directions (i.e., left, right, forward,

and back) plus the stop command.

As for the hardware, the eye tracking movement captured

by ISA module is sent over network to an Arduino Uno board

mounted on the wheelchair. Connected to this board is an

Arduino-programmed relay board that actually transforms the

eye-gaze input into signals for the power wheelchair engine. In

other words, when gaze is directed onto, say, the back area of

the screen, the boards mounted on the wheelchair activate one

relay simulating the input that the joystick would provide if it

were moved backward.

III. THE CASE FOR PRODUCT LINE ENGINEERING

A software product line aims at increasing quality and

development speed while decreasing costs. For example, large

companies such as Nokia and HP experienced large increases

in productivity since turning to software product lines [1]. Such

benefits, however, are not limited to large companies only.

Several are the reports of product lines being beneficial to

small-medium companies as well [4][5][13][14]. Besides,

software product lines incorporate various practices that have

proved to be successful in managing distributed open source

software projects [10][11][12]. It has also been argued that the

Linux Kernel represents the best example of a large open-

source product line, considering how the community

successfully manages the development of OS kernels for very

many and different software architectures [6].

The NGO projects of assistive technology are growing as

families of related systems, which vary according to the type

and degree of disability. We then propose to evolve them by

reusing a platform of common aspects (i.e., core assets) while

unique features are allowed to differ. The benefit of software

product lines that is more relevant for the NGO project is the

decrease in labor needs [7][9].

Large companies usually rely on commercial solutions like

Gears to support the product line lifecycle. However, the

choice of the infrastructure upon to build a product line-

compliant process for a NGO, is constrained by limited or no

budget for acquiring commercial software solutions. Our

proposal is to accomplish the benefits of tool support for

product lines, without changing the existing communication

and development infrastructure at the NGO. In our case, the

development activities are coordinated through GitHub and

email. This is not so different from software engineering

practices in the Linux community, which builds its product line

of kernels using a lean infrastructure that ultimately relies on

computer-mediated communication tools (e.g., mailing lists

and chats), web-based knowledge centers (i.e., website, wiki,

blog), and version control systems (i.e., git).

Software product lines are normally built by first

developing the platform of core assets and then adding

incrementally products as well as new core assets are needed

[2][8]. Yet, sometimes software product lines are built using a

reactive approach, that is, starting with one or more existing

products from which the core assets are generated for future

products [1]. As compared to the other one, the retroactive

approach grants lower entry costs.

We are planning to follow this retroactive approach to start

a software product line from the existing NGO products. Of

course, we will need to redefine the common architecture and

the core assets in a way that they are enough robust, extensible,

and appropriate to future product line needs. Table 1 shows the

core assets and the variabilities for the product line that we are

going to build from ISA and IMA products. In particular, the

new, refactored ISA is a product that is tailored for people

suffering for speech impairment, whereas IMA is intended for

those affected by motor impairment.

TABLE I. COMMONALITIES AND VARIABILITIES OF THE PRODUCT LINE

FOR ISA AND IMA

 Features ISA IMA

C
o
re

 a
ss

e
ts

 Eye tracking  

UI dashboard  

DB access  

Networking  

V
a
ri

a
b

il
it

ie
s Virtual keyboard 

Messaging 

Power wheelchair control 

Home automation 

When installed together, ISA and IMA will provide a

comprehensive solution for people affected by totally

invalidating diseases such as ALS.

Afterwards, we will create a product line for the Paperboy

apps too. In this case, however, the product line is not intended

to manage feature variabilities across products (apps are written

in different languages), but rather to handle differences within

each mobile platform (e.g., different screen sizes, API changes

across OS versions).

IV. BRANCHING MODEL

Being the existing infrastructure for software development,

the NGO product lines will rely on the git version control

system (VCS) and the GitHub project-hosting repository. In

Fig. 1, we illustrate a graphical representation of the branching

model that we are adopting at ISF to ease the release

management of the NGO product families. For the sake of

readability, the model is instantiated for the specific case of the

ISA/IMA product family. The branching model, which is an

adaptation of the one proposed by Driessen [3], meets the

requirement of only needing a distributed VCS, such as git in

our case.

First, we consider the git repository hosted at GitHub (the

origin in git lingo) to be the “central” one. Technically, there is

no such a thing as a centralized repository in a distributed VCS.

Yet, all the NGO developers, who must fork the origin into a

personal clone of the repository, are invited not to push into or

pull changes from other peers’ repositories. Instead, all changes

must propagate through the origin. In this way, we call “origin”

the central repository too. Such a restriction is particularly

helpful to the NGO members in charge of the project because it

ensures less coordination effort in tracking pending

contributions.

In our model, we distinguish between main branches and

supporting branches. Main branches exist for the entire life of

the project. In particular, the central repository holds master, *-

product, and *-develop branches, where the last two are

instantiated for each product – in our case, ISA-product, IMA-

product and ISA-develop and IMA-develop.

In the origin, the master branch, which could be renamed to

core, is where the source code of the shared assets of the

products is committed. In our case, the common features shared

between ISA and IMA include, for example, the eye-tracking

module, the UI dashboard, and the data access layer. Each

commit made to the origin/master branch must be tagged with

a release number (e.g., 0.1).

Instead, the features that set the products apart must go into

the product-specific branches. In other words, the origin/*-

Fig. 1. The ISF branching model for handling release management of ISA/IMA products (adapted from [3]).

products are the production branches where the source code

always reflects a production-ready state. In our example, chat

and virtual keyboard features belong to the ISA-product

branch, whereas home automation and wheelchair control

belong to IMA-product. Every commit to production branches

creates a new release, which therefore is tagged to reflect a

version increment, such as, from 0.1.0 to 0.2.0. The

origin/master branch receives push commits and pull requests

from production branches. Push commits are necessary to

propagate changes made to the common features from one

product to the others in the family. Performing a pull request

from the master branch into a production branch also creates a

new product release that is tagged to reflect a minor increment,

e.g., from version 0.2.0 to 0.2.1.

The origin/*-development branches, instead, are the so-

called integration branches. Here the source code contains the

latest delivered development changes for the upcoming new

release. If we had continuous integration, nightly builds of

products would be automatically compiled out of these

branches. Changes from integration branches are merged into

their respective product branches when a development release

is ready for production.

The other types of branches are called supporting. These

branches will not be found in the central repository, but only in

its clones. In fact, these branches are typically created in

developers’ forks just to implement new features or fix bugs.

As such, they have a limited lifespan, considerably shorter than

that of the project. They will only exist as long as the feature is

in development or the bug fixed. Therefore, they will be

eventually merged back into the development branch they were

branched off from and then deleted.

V. CONCLUSIONS

In this paper, we have presented the case of a NGO whose

volunteers develop assistive technologies without any financial

support. We have argued that PLE may offer an opportunity to

increase the sustainability of NGO projects and have proposed

a PLE model that only relies on the branching capability of a

free version control system.

When implemented, we expect the proposed PLE model to

bring benefits in terms of decreased labor needs and time

required to deliver fixes and new features. This is fundamental

for the NGO since its projects are carried on through the

commitment of its volunteers in their limited free time. We also

expect that the proposed PLE model will make easier project

release management

ACKNOWLEDGMENT

We would like to thank the head of the Apulian ISF chapter

and all the students who contributed to ISF projects during their

final-year thesis projects.

REFERENCES

[1] L. Baas, P.C. Clements, and R. Kazman. Software Architecture

in Practice, 2nd ed. SEI Series in Software Engineering.

Addison-Wesley, 2003.

[2] F.J. Linden, K. Schmid, E. Rommes, Software Product Lines in

Action: The Best Industrial Practice in Product Line Engineering

Springer, 2007.

[3] V. Driessen, “A successful Git branching model”,

http://nvie.com/posts/a-successful-git-branching-model.

[4] C. Gacek, P. Knauber, K. Schmid, & P. Clements, “Successful

Software Product Line Development in a Small Organization. A

Case Study”. Technical Report, Fraunhofer Institut for

Experimental Software Engineering (IESE), 013.01/E, 2001.

[5] P. Knauber, D. Muthig, K. Schmid, and T. Widen. “Applying

Product Line Concepts in Small and Medium-Sized

Companies.” IEEE Software, vol. 17, no. 5, Sept. 2000, pp. 88-

95, DOI=10.1109/52.877873.

[6] R. Lotufo, S. She, T. Berger, K. Czarnecki, and A. Wąsowski,

“Evolution of the Linux Kernel Variability Model.” Software

Product Lines: Going Beyond, Lecture Notes in Computer

Science, vol. 6287, 2010, pp 136-150, DOI=10.1007/978-3-642-

15579-6_10.

[7] L.M. Northrop, “SEI's Software Product Line Tenets.” IEEE

Software, vol. 19, no. 4, Jul. 2002, pp. 32-40,

DOI=10.1109/MS.2002.1020285.

[8] K. Pohl, G. Böckle, F.J. van der Linden, Software Product Line

Engineering: Foundations, Principles and Techniques, Springer,

2005.

[9] SEI CMU, “Software Product Lines case studies”

http://www.sei.cmu.edu/productlines/casestudies.

[10] K. Tate, Sustainable Software Development: An Agile

Perspective, Addison-Wesley, 2005.

[11] F. van der Linden, “Open Source Practices in Software Product

Line Engineering.” In Software Engineering, Lecture Notes in

Computer Science, vol. 7171, 2013, pp 216-235,

DOI=10.1007/978-3-642-36054-1_8.

[12] J. van Gurp, C. Prehofer, and J. Bosch, “Comparing practices for

reuse in integration-oriented software product lines and large

open source software projects.” Softw. Pract. Exper, vol. 40, no.

4, Apr. 2010, pp. 285-312, DOI=10.1002/spe.v40:4.

[13] M. Verlage and T Kiesgen, “Five years of product line

engineering in a small company.” In Proc. 27th Int’l Conf. on

Softw. Eng. (ICSE '05), St. Louis, USA, May 15-21, 2005, pp.

534-543. DOI=10.1145/1062455.1062551.

[14] T. Vernazza, P. Galfione, A. Valerio, G. Succi, P. Predonzani,

“Moving Towards Software Product Lines in a Small Software

Firm: a Case Study.” In Proc. of ICSE Workshop on Software

Product Lines: Economics, Architectures and Implications,

Limerick, Ireland, June 2000.

